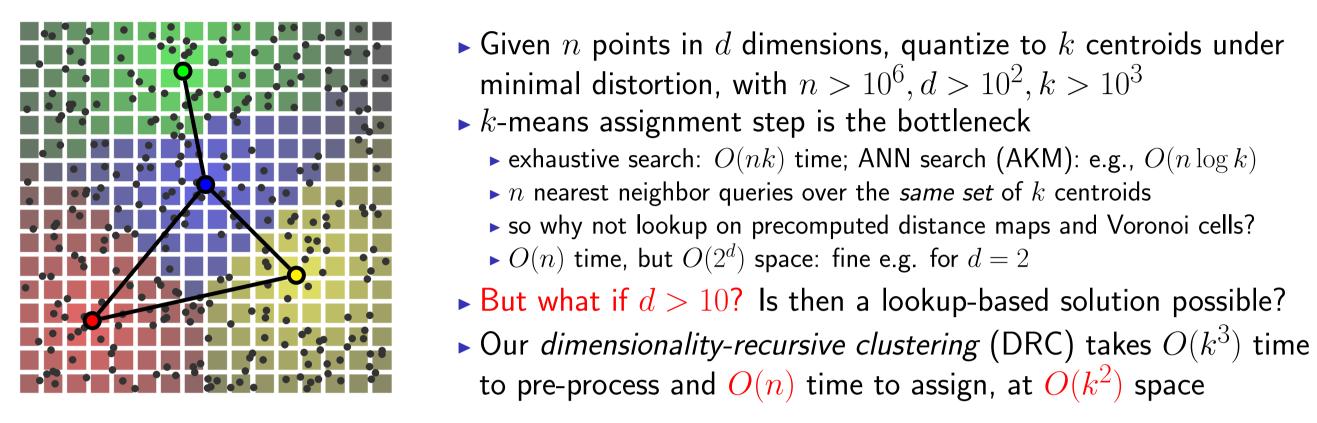


Motivation

- Connection between clustering and approximate nearest neighbor (ANN) search ► approximate k-means (AKM) [1]: use ANN search to accelerate assignment step
- ▶ product quantization (PQ) [2]: use k-means on subspaces to accelerate ANN search
- ► *inverted multi-index* [3]: exhaustively search on subspaces before searching on entire space
- ► What is the actual connection under subspace decomposition? Is there something missing?
- Can we use recursion to solve both problems at the same time?

Problem



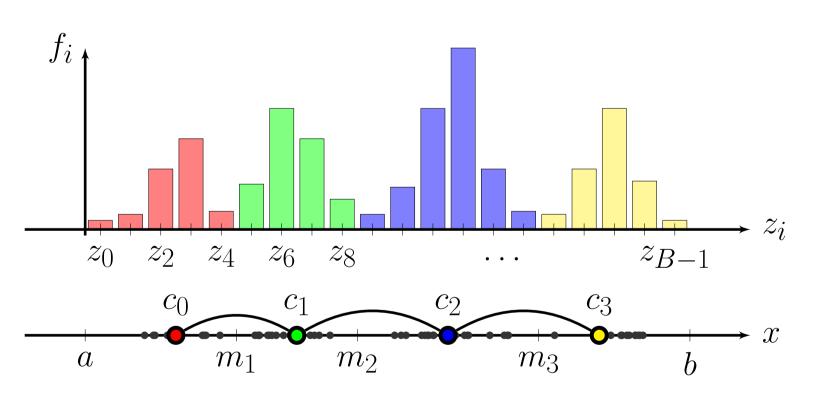
DRC Base case: one dimension

Given

- ▶ set X of N data points on interval I = [a, b) of \mathbb{R}
- target number K > 1 of centroids
- Representation
- ▶ partition I into $B \gg K$ subintervals (bins) of length $\ell = (b a)/B$
- ▶ let $Z = \{z_0, \ldots, z_{B-1}\}$ be the midpoints of subintervals
- ▶ allocate $x \in X$ to bin $r(x) = \lfloor (x-a)/\ell \rfloor \in \{0, \dots, B-1\}$
- quantize points via $h: I \to Z$ with $x \mapsto h(x) = z_{r(x)} = a + \ell r(x) + \ell/2$

Initialization

- ▶ let $X_i = \{x \in X : r(x) = i\}$ be the set of points allocated to bin i
- measure discrete distribution f by normalized histogram frequency $f_i = |X_i|/N$
- ▶ centroids $C = \{c_0, \ldots, c_{K-1}\}$: K samples out of Z with replacement, according to f



Quantizer

- ▶ ideal: $q: I \to C$ with $x \mapsto q(x) = \arg \min_{c \in C} ||x c||$
- ▶ approximation: restriction $q^*: Z \to C$, *i.e.*, compute q(z) and store as $q^*[z]$ for all $z \in Z$. Assignment step
- ▶ let m_k be the midpoint of $[c_{k-1}, c_k)$ for $k = 1, \ldots, K-1$; $m_0 = a$, $m_K = b$
- ▶ then Voronoi cell $V_k = \{z \in Z : q(z) = c_k\}$ found as $Z \cap [m_k, m_{k+1})$ for all $c_k \in C$ ▶ assign $q^*[z] \leftarrow c_k$ for all $z \in V_k$

Update step

- weighted averaging over Voronoi cells: $c_k \leftarrow \sum_{i:z_i \in V_k} f_i z_i$ for all $c_k \in C$ At termination
- ▶ approximate $q(x) \simeq q^*[h(x)] \in C$ for all $x \in X$
- construct graph $G = \{C, E\}$ with edges $E = \{(c_{k-1}, c_k) : k = 1, \dots, K-1\}$ between successive centroids as a neighborhood system over I

Quantize and Conquer: A dimensionality-recursive solution to clustering, vector quantization, and image retrieval Yannis Avrithis, NTUA

DRC Recursion: from d to 2d dimensions (or: learning a joint distribution from two marginal ones)

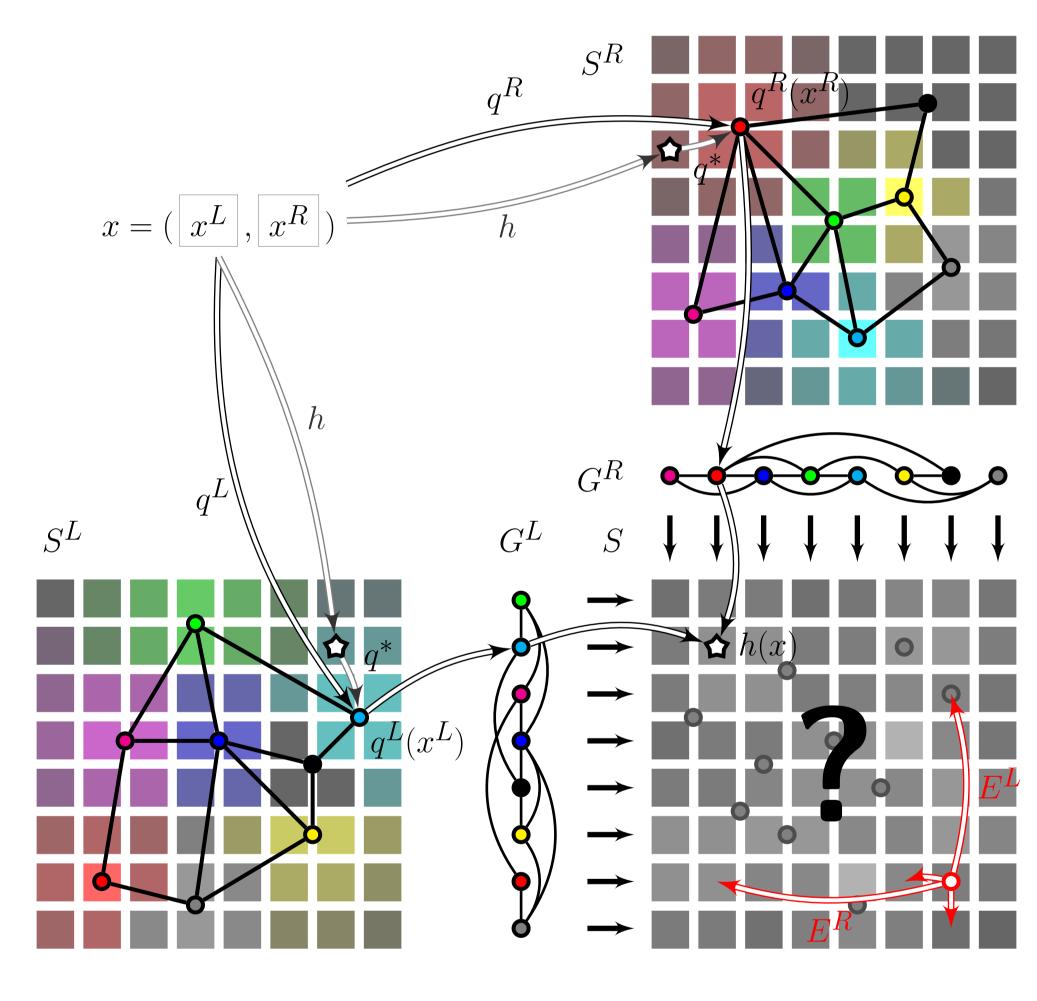
Subspace decomposition

• decompose 2d-dimensional space S into product $S^L \times S^R$ of d-dimensional subspaces S^L, S^R • write $x \in S$ as $x = (x^L, x^R)$ with projections $x^L \in S^L, x^R \in S^R$ Given

- ▶ set X of N data points on interval $I = I^L \times I^R$ of S
- target number K > 1 of centroids
- ▶ sets of projections X^L, X^R clustered into C^L, C^R , each of J centroids ▶ each projection x^L (x^R) quantized to $q^L(x^L) \in C^L$ ($q^R(x^R) \in C^R$)
- ▶ graphs $G^L = \{C^L, E^L\}$, $G^R = \{C^R, E^R\}$ representing neighborhood systems over I^L, I^R Representation
- ▶ let $Z = C^L \times C^R$ be a grid of $B = J \times J$ points in S
- write $Z = \{z_0, \ldots, z_{B-1}\}$: again, a discrete representation of I
- quantize points via $h: I \to Z$ with $x \mapsto h(x) = (q^L(x^L), q^R(x^R))$ Initialization

▶ let $X_i = \{x \in X : h(x) = z_i\}$ be the set of points allocated to bin i

• measure f with $f_i = |X_i|/N$ and sample $C = \{c_0, \ldots, c_{K-1}\}$ as in one dimension



Clustering

- ▶ assignment: compute q(z) and store as $q^*[z]$ for all $z \in Z$: product propagation, $O(K^3)$
- update: exactly as in one dimension

At termination

- ▶ quantize centroids to nearest points on grid Z as $c_k \leftarrow h(c_k)$ for $c_k \in C$
- ▶ approximate $q(x) \simeq q^*[h(x)] \in C$ for all $x \in X$
- compute graph $G = \{C, E\}$ once at final assignment step, as by-product of propagation

References

[1] J. Philbin et al. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.

[2] H. Jégou *et al.* Product quantization for nearest neighbor search. *PAMI* 33(1), 2011. [3] A. Babenko and V. Lempitsky. The inverted multi-index. In CVPR, 2012.

Dim.-recursive quantization (DRQ)

Approximate quantization

- ▶ recursively compute q(x) by delegating $q^{L}(x), q^{R}(x)$ if d > 1:
 - $q(x) \simeq \begin{cases} q^*[a + \ell r(x) + \ell/2], \ d = 1\\ q^*[q^L(x^L), q^R(x^R)], \ d > 1 \end{cases}$
- time complexity when $D = 2^P$: O(D)▶ tree structure with D leaves and D-1 internal nodes \blacktriangleright hence, D scalar quantizations and D-1 lookups
- \blacktriangleright not precise enough for NN search, but fine for k-means assignment

Exact quantization

- recursively compute squared Euclidean distance to all centroids
- ► d = 1: compute $\delta(x, c) = (x c)^2$ for all $c \in C$. ► d > 1:
- delegate $\delta^L(x^L,z^L)$, $\delta^R(x^R,z^R)$, for all $z\in Z$
- let $\delta(x,z) = \delta^L(x^L,z^L) + \delta^R(x^R,z^R)$ for any $x \in I, z \in Z$
- ► minimize $q(x) = \arg \min_{c \in C} \delta(x, c)$
- \blacktriangleright exact because centroids are stored for d = 1 and quantized on grid for d > 1
- ▶ time complexity with $D = 2^P$ (tree of height P), K_p centroids at 2^p dimensions (level p) and $\mathcal{K} = \{K_0, \ldots, K_P\}$ ▶ recursive: $O(\phi(\mathcal{K})) = O(K \log D)$ where $\phi(\mathcal{K}) = \sum_{p=0}^{P} 2^{P-p} K_p$ ► naïve: $O(K_P 2^P) = O(KD)$

Experiments

Clustering

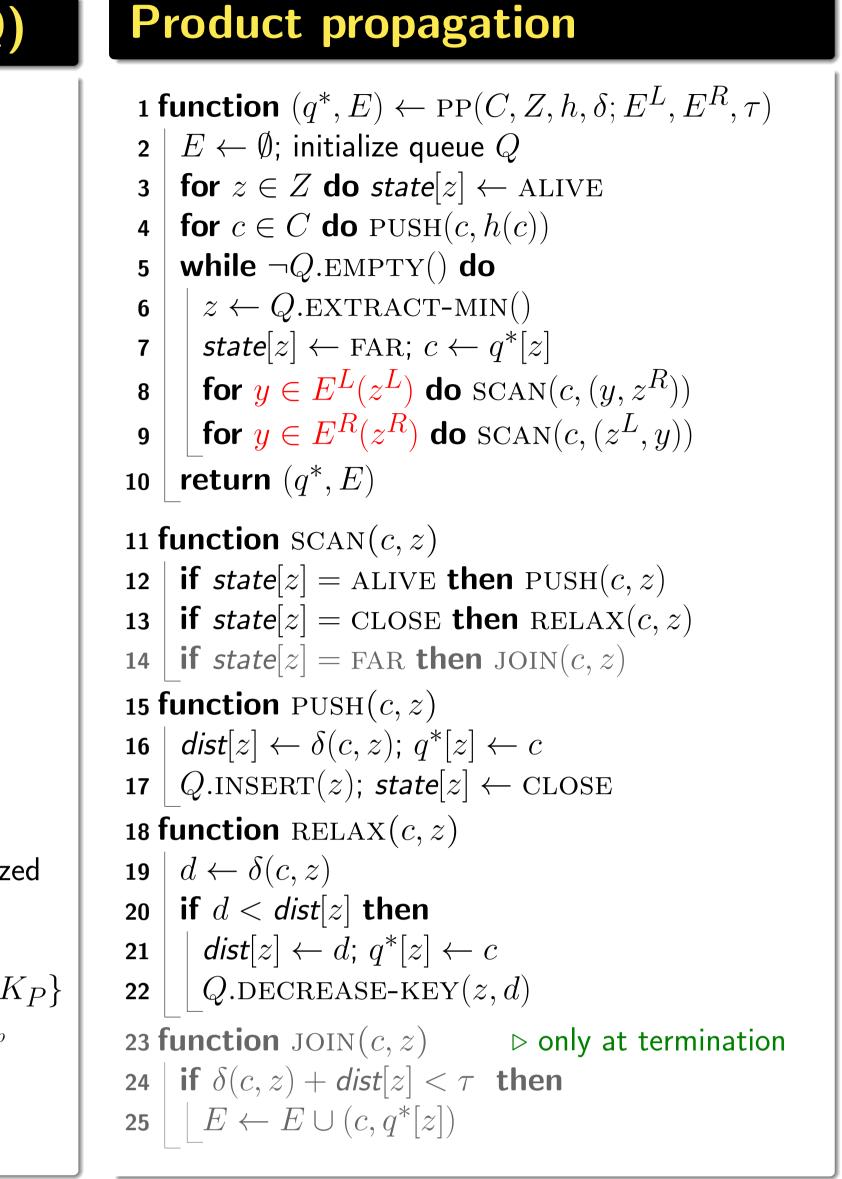
4 codebooks at D = 32 dimensions each on N = 12.5 M 128-dimensional SIFT descriptors of Oxford 5K

K	lo	gi	$\overline{K_p}$	(0	time (m)		
	1	2	4	8	16	32	time (m)
16K	6	7	8	9	11	14	129.96
8K	6	7	8	9	11	13	119.43
4K	6	7	8	9	10	12	20.07
2K	5	6	7	8	9	11	2.792
1K	5	6	7	8	9	10	2.608
512	4	5	6	7	8	9	0.866
4K	A	KN	Λ	[1]			504.2

Image retrieval

fourth-order multi-index [3] with 4K sub-codebooks, partially inverted at 24bit/point, MA k = 90

Training set	Oxford 5K / other [*]				Paris 6K / other [*]		K	MA	Other
Test set	Ox5K Ox105K		Pa6K Pa106K		Ox5K Ox105K			IVIA	Other
This work	0.716	0.657	0.696	0.584	0.703	0.640	4K ⁴	\checkmark	
Perdoch <i>et al</i> . 2009	0.717	0.568			0.558	0.423	1M		
Arandjelovic <i>et al</i> . 2012	0.683	0.581					1M		
Shen <i>et al</i> . 2012	0.649	0.568		—		—	1M		
Philbin <i>et al</i> . 2008	0.614	0.498			0.403	0.290	1M		
Philbin <i>et al</i> . 2008	0.673	0.534			0.493	0.343	1M	\checkmark	
Philbin <i>et al</i> . 2007	0.618	0.490					1M		
Jegou <i>et al</i> . 2010					0.615	0.516	200K	\checkmark	HE, WGC
Jegou <i>et al</i> . 2009					0.647		20K	\checkmark	HE, WGC
Mikulik <i>et al</i> . 2012			0.625*	0.533*	0.618*	0.554*	16M	\checkmark	
Mikulik <i>et al</i> . 2012			0.749*	0.675*	0.742*	0.674*	16M	*	Learning



Vector quantization

averaged over the N = 75K SIFT descriptors of the 55 cropped query images of Oxford 5K

