
Quantize and Conquer: A dimensionality-recursive solution
to clustering, vector quantization, and image retrieval

Yannis Avrithis, NTUA

Motivation

I Connection between clustering and approximate nearest neighbor (ANN) search
I approximate k-means (AKM) [1]: use ANN search to accelerate assignment step
I product quantization (PQ) [2]: use k-means on subspaces to accelerate ANN search
I inverted multi-index [3]: exhaustively search on subspaces before searching on entire space

I What is the actual connection under subspace decomposition? Is there something missing?

I Can we use recursion to solve both problems at the same time?

Problem

I Given n points in d dimensions, quantize to k centroids under
minimal distortion, with n > 106, d > 102, k > 103

I k-means assignment step is the bottleneck
I exhaustive search: O(nk) time; ANN search (AKM): e.g., O(n log k)
I n nearest neighbor queries over the same set of k centroids
I so why not lookup on precomputed distance maps and Voronoi cells?
I O(n) time, but O(2d) space: fine e.g. for d = 2

I But what if d > 10? Is then a lookup-based solution possible?

I Our dimensionality-recursive clustering (DRC) takes O(k3) time
to pre-process and O(n) time to assign, at O(k2) space

DRC Base case: one dimension

Given

I set X of N data points on interval I = [a, b) of R
I target number K > 1 of centroids

Representation

I partition I into B � K subintervals (bins) of length ` = (b− a)/B
I let Z = {z0, . . . , zB−1} be the midpoints of subintervals

I allocate x ∈ X to bin r(x) = b(x− a)/`c ∈ {0, . . . , B − 1}
I quantize points via h : I → Z with x 7→ h(x) = zr(x) = a + `r(x) + `/2

Initialization

I let Xi = {x ∈ X : r(x) = i} be the set of points allocated to bin i

I measure discrete distribution f by normalized histogram frequency fi = |Xi|/N
I centroids C = {c0, . . . , cK−1}: K samples out of Z with replacement, according to f

fi

zi
z0 z2 z4 z6 z8 . . . zB−1

x
a bm1 m2 m3

c0 c1 c2 c3

Quantizer

I ideal: q : I → C with x 7→ q(x) = argminc∈C ‖x− c‖
I approximation: restriction q∗ : Z → C, i.e., compute q(z) and store as q∗[z] for all z ∈ Z.

Assignment step

I let mk be the midpoint of [ck−1, ck) for k = 1, . . . , K − 1; m0 = a, mK = b

I then Voronoi cell Vk = {z ∈ Z : q(z) = ck} found as Z ∩ [mk,mk+1) for all ck ∈ C
I assign q∗[z]← ck for all z ∈ Vk
Update step

I weighted averaging over Voronoi cells: ck ←
∑
i:zi∈Vk fizi for all ck ∈ C

At termination

I approximate q(x) ' q∗[h(x)] ∈ C for all x ∈ X
I construct graph G = {C,E} with edges E = {(ck−1, ck) : k = 1, . . . , K − 1} between successive

centroids as a neighborhood system over I

DRC Recursion: from d to 2d dimensions
(or: learning a joint distribution from two marginal ones)

Subspace decomposition

I decompose 2d-dimensional space S into product SL × SR of d-dimensional subspaces SL, SR

I write x ∈ S as x = (xL, xR) with projections xL ∈ SL, xR ∈ SR
Given

I set X of N data points on interval I = IL × IR of S

I target number K > 1 of centroids

I sets of projections XL, XR clustered into CL, CR, each of J centroids

I each projection xL (xR) quantized to qL(xL) ∈ CL (qR(xR) ∈ CR)

I graphs GL = {CL, EL}, GR = {CR, ER} representing neighborhood systems over IL, IR

Representation

I let Z = CL × CR be a grid of B = J × J points in S

I write Z = {z0, . . . , zB−1}: again, a discrete representation of I

I quantize points via h : I → Z with x 7→ h(x) = (qL(xL), qR(xR))

Initialization

I let Xi = {x ∈ X : h(x) = zi} be the set of points allocated to bin i

I measure f with fi = |Xi|/N and sample C = {c0, . . . , cK−1} as in one dimension

x = (xL , xR)

SR
qR(xR)

GR

SL GL S

qL(xL)

h(x)

EL

ER

?

qL

qR

h

h

q∗

q∗

Clustering

I assignment: compute q(z) and store as q∗[z] for all z ∈ Z: product propagation, O(K3)

I update: exactly as in one dimension

At termination

I quantize centroids to nearest points on grid Z as ck ← h(ck) for ck ∈ C
I approximate q(x) ' q∗[h(x)] ∈ C for all x ∈ X
I compute graph G = {C,E} once at final assignment step, as by-product of propagation

References

[1] J. Philbin et al. Object retrieval with large vocabularies and fast spatial matching. In CVPR,
2007.
[2] H. Jégou et al. Product quantization for nearest neighbor search. PAMI 33(1), 2011.
[3] A. Babenko and V. Lempitsky. The inverted multi-index. In CVPR, 2012.

Dim.-recursive quantization (DRQ)

Approximate quantization

I recursively compute q(x) by delegating qL(x), qR(x) if
d > 1:

q(x) '
{
q∗[a + `r(x) + `/2], d = 1

q∗[qL(xL), qR(xR)], d > 1

I time complexity when D = 2P : O(D)
I tree structure with D leaves and D − 1 internal nodes
I hence, D scalar quantizations and D − 1 lookups

I not precise enough for NN search, but fine for k-means
assignment

Exact quantization

I recursively compute squared Euclidean distance to all
centroids

I d = 1: compute δ(x, c) = (x− c)2 for all c ∈ C.
I d > 1:

I delegate δL(xL, zL), δR(xR, zR), for all z ∈ Z
I let δ(x, z) = δL(xL, zL) + δR(xR, zR) for any x ∈ I, z ∈ Z
I minimize q(x) = argminc∈C δ(x, c)

I exact because centroids are stored for d = 1 and quantized
on grid for d > 1

I time complexity with D = 2P (tree of height P), Kp
centroids at 2p dimensions (level p) and K = {K0, . . . , KP}
I recursive: O(φ(K)) = O(K logD) where φ(K) =

∑P
p=0 2

P−pKp

I näıve: O(KP2
P) = O(KD)

Product propagation

1 function (q∗, E)← pp(C,Z, h, δ;EL, ER, τ)
2 E ← ∅; initialize queue Q
3 for z ∈ Z do state[z]← alive
4 for c ∈ C do push(c, h(c))
5 while ¬Q.empty() do
6 z ← Q.extract-min()
7 state[z]← far; c← q∗[z]
8 for y ∈ EL(zL) do scan(c, (y, zR))

9 for y ∈ ER(zR) do scan(c, (zL, y))

10 return (q∗, E)

11 function scan(c, z)
12 if state[z] = alive then push(c, z)
13 if state[z] = close then relax(c, z)
14 if state[z] = far then join(c, z)

15 function push(c, z)
16 dist[z]← δ(c, z); q∗[z]← c
17 Q.insert(z); state[z]← close

18 function relax(c, z)
19 d← δ(c, z)
20 if d < dist[z] then
21 dist[z]← d; q∗[z]← c
22 Q.decrease-key(z, d)

23 function join(c, z) . only at termination
24 if δ(c, z) + dist[z] < τ then
25 E ← E ∪ (c, q∗[z])

Experiments

Clustering
4 codebooks at D = 32 dimensions each on N = 12.5M
128-dimensional SIFT descriptors of Oxford 5K

K
logKp (d = 2p)

time (m)
1 2 4 8 16 32

16K 6 7 8 9 11 14 129.96
8K 6 7 8 9 11 13 119.43
4K 6 7 8 9 10 12 20.07
2K 5 6 7 8 9 11 2.792
1K 5 6 7 8 9 10 2.608

512 4 5 6 7 8 9 0.866

4K AKM [1] 504.2

Vector quantization
averaged over the N = 75K SIFT descriptors of the 55
cropped query images of Oxford 5K

K 16K 8K 4K 2K 1K 512

Approximate (µs) 0.95 0.83 0.80 0.73 0.80 0.90
Exact (ms) 1.19 0.79 0.51 0.26 0.21 0.11

101 102

0.5

0.6

0.7

0.8

0.9

1

R

R
ec

al
l@
R K = 16K

K = 8K
K = 4K
K = 2K
K = 1K
K = 512

Image retrieval
fourth-order multi-index [3] with 4K sub-codebooks, partially inverted at 24bit/point, MA k = 90

Training set Oxford 5K / other [*] Paris 6K / other [*]
K MA Other

Test set Ox5K Ox105K Pa6K Pa106K Ox5K Ox105K

This work 0.716 0.657 0.696 0.584 0.703 0.640 4K4 X
Perdoch et al. 2009 0.717 0.568 — — 0.558 0.423 1M
Arandjelovic et al. 2012 0.683 0.581 — — — — 1M
Shen et al. 2012 0.649 0.568 — — — — 1M
Philbin et al. 2008 0.614 0.498 — — 0.403 0.290 1M
Philbin et al. 2008 0.673 0.534 — — 0.493 0.343 1M X
Philbin et al. 2007 0.618 0.490 — — — — 1M
Jegou et al. 2010 — — — — 0.615 0.516 200K X HE, WGC
Jegou et al. 2009 — — — — 0.647 — 20K X HE, WGC
Mikulik et al. 2012 — — 0.625* 0.533* 0.618* 0.554* 16M X
Mikulik et al. 2012 — — 0.749* 0.675* 0.742* 0.674* 16M * Learning

http://image.ntua.gr/iva/research/drvq Contact: iavr@image.ntua.gr

http://image.ntua.gr/iva/research/drvq

