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Overview

I Explicitly detect visual bursts in an image at an early stage

I Aggregate bursty groups into meta-descriptors on database side

I Asymmetric scheme: do not aggregate on query side

I On par with state of the art, yet at much lower memory and query time

Representation and matching

Image representation

IX : set of d-dimensional local descriptors per image

I C: codebook of d-dimensional visual words or cells

IXc: descriptors assigned to cell c ∈ C
Similarity function

S(X ,Y) = ν(X ) ν(Y)
∑
c∈C

wc M(Xc,Yc)

IM: cell similarity function

Iwc: visual word weighting e.g. idf

I ν(X ) =
(∑

c∈C wc M(Xc,Xc)
)−1/2

: normalization factor

What are visual bursts?

(a) Six most populated bursts
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(b) Feature distribution after PCA analysis

Observation

I Not like text bursts: the descriptor space is continuous

I Bursts have arbitrary shape and overlap: unlikely to fit within codebook cells

I Possible sources: to structure in man-made scenes, texture in natural
environments, multiple feature detector responses

Burst detection example

connected components quick shift hierarchical spectral clustering

kernel k-means normalized cuts spectral clustering

Figure 4. Feature grouping and burst detection with six methods. In each case, the six most populated bursts are shown with a dot at the
position of each feature, colored according to the burst it belongs to.
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Figure 5. Size distribution of groups found by each method for the example of Fig. ??. Groups of two features or more are considered
bursts and the remaining groups each contain one isolated feature. Observe the logarithmic axis: bursts are only a small fraction of groups.

4.2. Results on VLAD

Burst detection and aggregation. Fig. ?? illustrates the
performance of VLAD on Holidays-L under varying ag-
gregation%. As discussed in Section 3.2, we compare the
three most promising methods of the initial qualitative eval-
uation, i.e. connected components, quick shift and hierar-
chical spectral clustering. Connected components choice is
always superior, while the other two methods do not achieve
any benefit. Therefore, we focus all remaining experiments
on connected components.

Large-scale. Table ?? shows large scale results on
Holidays-L plus distractors. Recall that aggregation% of
1 refers to the baseline. It is impressive that we get absolute

aggregation% 1.000 0.764 0.638 0.556

k = 16 41.3 42.7 44.1 45.0
k = 64 46.3 47.5 48.3 48.8

Table 2. VLAD mAP performance vs. aggregation% on Holidays-
L +Flickr 100k distractors for two vocabulary sizes, 16 and 64.

performance gain at reduced memory and query time.

4.3. Results on SMK*/ASMK*

Symmetric vs. asymmetric. Fig. ?? compares symmetric
and asymmetric aggregation on Holidays-L; recall that in
the latter case the query is not aggregated. It turns out that

Feature kernel

Feature kernel k
k(f, g) = ku(uf , ug)ks(sf , sg)kθ(θf , θg)

I f, g: local image features

I uf : local descriptor; sf : scale; θf : orientation

Descriptor kernel ku
I Generative binary classifier:
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ku(x, y) = p(B|〈x, y〉)

p(B|z) = p(z|B)p(B)
p(z|B)p(B) + p(z|B)p(B)

IB: pairs in the same burst

IB pairs not in the same burst

Scale kernel ks
I Gaussian:

ks(s, t) = exp
{
−λ log2

(s
t

)} Orientation kernel kθ
I von Mises:

kθ(θ, φ) =
eκ cos(θ−φ) − e−κ

2 sinh(κ)

Burst detection and aggregation

Representation

IF = {f1, . . . , fn}: set of n local image features

IK: n× n affinity matrix with Kij = k(fi, fj)

Burst detection

I Based on a kernel method, or operate on metric spaces

I Able to automatically determine (or to control with a parameter) the number of
groups, such that non-matching features are not grouped

I The clear winner amongst all tested methods is connected component analysis

Burst aggregation

I Take the average of the descriptors in each bursty group and `2-normalize.

Burst detection using connected components

Figure 6. The six most populated bursts found by connected com-
ponents on the example of Fig. ??. An image patche of size 30×30
pixels is shown for each feature; a dot is shown at each feature po-
sition, colored according to burst exactly as in Fig. ??.

Taking into account the preliminary evaluation and the
fact that the spectral methods are quite slow to apply at large
scale, we choose the first three methods of Fig. ?? for fur-
ther quantitative evaluation in the context of retrieval.

Burst aggregation. Given an image, the result of burst de-
tection is a partition of its features into groups. We simply
take the average of the descriptors in each group and `2-
normalize them. Discarding geometry, this yields a set of
(aggregated) descriptors to represent the image, so any en-
coding or search model applies.

4. Experiments

We evaluate and compare the proposed burst detection
and aggregation in the context of two different image re-
trieval models, namely VLAD and SMK/ASMK. We first
discuss the evaluation protocol and give some implemen-
tation details; then we discuss the impact of parameters
for each method and analyze the benefits we obtain in the
memory-performance trade-off.

4.1. Experimental setup

Datasets. We conduct experiments on three retrieval bench-
marks, namely Holidays [?], Oxford [?], and Paris [?]. We
study the impact of parameters mainly on Holidays. To
evaluate performance on larger scale, we add distractors
from the Flickr 100k set [?] to Holidays and Oxford.

Descriptors. Local features are extracted with the Hessian-
affine detector [?] on Holidays and its improved version [?]
on Oxford and Paris. We adopt the default parameters of the
detector, but we also use a lower threshold and larger patch
size to yield different feature sets for Holidays. Since we are
generating a reduced feature set by aggregating, this helps
evaluate the performance at the same memory depending
on the initial feature set. Table ?? shows the three different

feature set #features threshold patch size

Holidays-S 4.4M 500 21
Holidays-M 4.3M 500 41
Holidays-L 6.6M 300 41

Table 1. Three feature sets obtained from Holidays with different
detector parameters. Holidays-S is the default.

feature sets used. We use RootSIFT [?] descriptors in all
our experiments.

Evaluation. Retrieval performance is measured in terms
of mean average precision (mAP). As we vary the number
of detected bursts, we generate aggregated feature sets of
varying size; the ratio to the original size, averaged over
a dataset, is called aggregation%. We thus measure mAP
as a function of aggregation% to evaluate the memory-
performance trade-off. When an inverted file is used, we
also measure the imbalance factor [?], which is directly re-
lated to the search cost and should be as close as possible to
the optimal value of 1.

Burst detection and aggregation. On Holidays, we em-
ploy the proposed descriptor kernel and scale kernel only;
referring to (2), we use kernel kuks. On Oxford and Paris
on the other hand, we use all three kernels, i.e. descriptor,
scale and orientation; that is, kukskθ. This setting always
gives the best performance. We initially evaluate three dif-
ferent burst detection methods, and then focus on connected
components. We apply different thresholds to the affinity
matrix to vary the number of bursts such that aggregation%
varies in the range of 10-100%. In all graphs, the baseline
is always the rightmost point. We follow two strategies:
database descriptors are always aggregated, while query de-
scriptors may be aggregated or not; these are called sym-
metric and asymmetric aggregation, respectively.

Retrieval models. We conduct experiments on two repre-
sentative retrieval models, VLAD [?] and SMK/ASMK [?].
In particular, we use the efficient versions SMK*/ASMK*
where descriptors are binarized. Both models target at re-
ducing the effect of burstiness: VLAD by power-law nor-
malization, and ASMK by its own aggregation after quanti-
zation. We present the benefit from our early burst detection
but interestingly we also show it can be complementary to
such methods.

Cost. The query cost is quadratic (linear) in aggregation%
for symmetric (asymmetric) aggregation, i.e. always less
than baseline. The off-line additional cost of burst detection
and aggregation is O(n2) where n is the number of features
per image. As a comparison, quantization with a flat vocab-
ulary is O(nk), where k is the vocabulary size. Therefore
the fixed cost of early detection is negligible in the AMSK
pipeline (k � n) and more expensive for VLAD (k < n),
yet reasonable.

Experiments on VLAD
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Performance on Holidays-L + Flickr 100k

aggregation% 1.000 0.764 0.638 0.556

k = 16 41.3 42.7 44.1 45.0
k = 64 46.3 47.5 48.3 48.8

IHolidays-L: Holidays dataset, 6.6M features

I aggregation%: ratio of aggregated to original
features averaged over the dataset

Experiments on SMK*/ASMK*
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Performance on Holidays-L, Oxford + Flickr 100k
Dataset Holidays-L 101k Oxford 105k

aggregation% 0.65 0.52 0.28 0.90 0.76 0.55
mAP 85.1 84.5 77.6 68.9 68.9 63.6

I Vocabulary size: 65k; first column is the baseline

Comparison to state of the art
Dataset MA Hol. Paris Oxf.

BoW [27] - - 40.3
BoW [27] X - - 49.3
BoW [24] - - 55.8

Fine vocab. [22] 74.9 74.9 74.2
Multi-index [3] X - 69.6 70.3

HE [15] 74.5 - 51.7
HE [15] X 77.5 - 56.1

AHE+burst [12] 79.4 - 66.0
AHE+burst [12] X 81.9 - 69.8
Query ad. [30] 81.4 70.3 73.9
Query ad. [30] X 82.1 73.6 78.0

aggregation% 78% 86% 89%
ASMK* [37] 80.0 74.4 76.4
ASMK* [37] X 81.0 77.0 80.4

This work X 88.1 77.5 81.3

Memory efficiency performance on Holidays
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Holidays-M, α = 3
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I Holidays-S: 4.4M features; Holidays-M: 4.3M features

Size distribution of burst groups
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