

Overview

- Explicitly detect visual bursts in an image at an early stage
- Aggregate bursty groups into meta-descriptors on database side
- Asymmetric scheme: do not aggregate on query side
- On par with state of the art, yet at much lower memory and query time

Representation and matching

Image representation

 $\blacktriangleright \mathcal{X}$: set of d-dimensional local descriptors per image

- $\blacktriangleright C$: codebook of *d*-dimensional visual words or *cells*
- \mathcal{X}_c : descriptors assigned to cell $c \in \mathcal{C}$

Similarity function

$$S(\mathcal{X}, \mathcal{Y}) = \nu(\mathcal{X}) \nu(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c M(\mathcal{X}_c, \mathcal{Y}_c)$$

- ► M: cell similarity function
- w_c : visual word weighting *e.g.* idf
- $\nu(\mathcal{X}) = \left(\sum_{c \in \mathcal{C}} w_c \operatorname{M}(\mathcal{X}_c, \mathcal{X}_c)\right)^{-1/2}$: normalization factor

What are visual bursts?

(a) Six most populated bursts

(b) Feature distribution after PCA analysis

Observation

- ► Not like text bursts: the descriptor space is continuous
- Bursts have arbitrary shape and overlap: unlikely to fit within codebook cells
- ► Possible sources: to structure in man-made scenes, texture in natural environments, multiple feature detector responses

Burst detection example

This work was supported by ERC grant VIAMASS no. 336054

Early burst detection for memory-efficient image retrieval

Miaojing Shi^{1,3}, Yannis Avrithis² and Hervé Jégou³

¹Peking University

²Univeristy of Athens, NTUA ³INRIA, Rennes

Feature kernel

Burst detection and aggregation

Representation

- $\mathcal{F} = \{f_1, \ldots, f_n\}$: set of n local image features
- K: $n \times n$ affinity matrix with $K_{ij} = k(f_i, f_j)$

Burst detection

- Based on a kernel method, or operate on metric spaces
- groups, such that non-matching features are not grouped

Burst aggregation

	-			
aggregation%	1.000	0.764	0.638	0.556
k = 16	41.3	42.7	44.1	45.0
<i>k</i> = 64	46.3	47.5	48.3	48.8

Contact: miao0913@gmail.com, iavr@image.ntua.gr, rvj@fb.com