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Motivation

I Planar shape decomposition without global optimization or differentiation

I All information available from (exterior and interior) medial axis representation

I Most rules and salience measure from psychophysical studies accommodated in a simple computational model

exterior interior cuts

Shape Representation

I A planar shape is a set X ⊂ R2; its boundary ∂X is a finite union of mutually disjoint simple closed curves

Medial axis [1]

I The distance map D(X) : X → R is a function mapping each point y ∈ X to

D(X)(y) = inf
x∈∂X

‖y − x‖

I For y ∈ R2, the projection or contact set

π(y) = {x ∈ ∂X : ‖y − x‖ = D(X)(x)}
is the set of points on the boundary at minimal distance to y; each x ∈ π(y) is a projection or contact point
of y

I The (interior) medial axis
M(X) = {x ∈ R2 : |π(x)| > 1}

is the set of points with more than one projection points

I The exterior medial axis of X is the medial axis of its complement R2 \X
Construction [2]

I Given two points x, y ∈ ∂X , the arc length `(x, y) is the length of the minimal arc of ∂X having x, y as
endpoints or ∞ if no such arc exists

I Given a point z, its chord residue r(z) = supx,y∈π(z) `(x, y)− ‖x− y‖ is the maximal difference between
arc length and chord length over all pairs of points in its projection

I Construction begins at local maxima of distance map and propagates as long as the residue is higher than a
given threshold σ > 0

exterior & interior medial axis concave corners

Quantitative Evaluation

I Evaluation measures: Hamming distance and Rand Index (Jaccard distance)

0 10 20 30 40 50 60 70 80 90 100
0.085

0.09

0.095

0.1

0.105

0.11

convexity tolerance, θ (degrees)

H
am

m
in

g
di

st
an

ce
,
H

0.22

0.24

0.26

0.28

0.3

0.32

R
an

d
In

de
x,
R

H : p = 0.3 p = 0.5 p = 0.7
R : p = 0.3 p = 0.5 p = 0.7

average majority
H R H R

DCE 0.208 0.497 0.188 0.466
SB 0.163 0.402 0.131 0.335
MD 0.151 0.371 0.126 0.328
FD 0.145 0.350 0.112 0.267

ACD 0.128 0.323 0.092 0.251
MAD 0.126 0.317 0.096 0.247

MAD-opt 0.118 0.303 0.085 0.225

CBE 0.111 0.288 0.069 0.186
Human 0.128 0.312 0.093 0.245
Baseline 0.160 0.424 0.140 0.376
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Table 2. Average dissimilarity measures over the benchmark database

all GT instances majority-voted

Hamming Jaccard Hamming Jaccard

ACD 0.128 0.323 0.092 0.251
IFD 0.145 0.350 0.112 0.267
MD 0.151 0.371 0.126 0.328
SD 0.163 0.402 0.131 0.335
DCE 0.208 0.497 0.188 0.466

ACD/IFD/MD/SD 0.114 0.302 0.069 0.190
ACD/IFD/MD/DCE 0.117 0.305 0.074 0.201
ACD/IFD/SD/DCE 0.118 0.311 0.069 0.188
ACD/MD/SD/DCE 0.117 0.305 0.076 0.206
IFD/MD/SD/DCE 0.121 0.317 0.076 0.206

ACD/IFD/MD/SD/DCE 0.111 0.288 0.069 0.186
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Fig. 4. Decompositions of four shapes generated by involved algorithms

decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter

Hamming (DH ) Jaccard (J)
Comb 0.069 0.186
ACD 0.092 0.251
IFD 0.112 0.267
MD 0.126 0.328
SD 0.131 0.335

DCE 0.188 0.466

Table 2. Average distances over the
benchmark database. Only the ’majority-
voted’ decomposition is used.

Comb ACD IFD MD SD DCE
Rank 1 2 3 4 5 6

Table 3. Comparison based on cut dis-
crepancy (DC).

performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.

Comb ACD

IFD MD

SD DCE

Figure 2. Decompositions of three shapes
generated by involved algorithms.

Acknowledgement

The authors thank J.-M. Lien for providing his pro-
gram [8] for our tests.

References

[1] J. DeWinter and J. Wagemans. Segmentation of object
outlines into parts: A large-scale integrative study. Cog-
nition, 99:275–325, 2006.

[2] T. Dey et al. Shape segmentation and matching with
flow discretization. LNCS, 2748:25–36, 2003.

[3] D. Hoffman and W. Richards. Parts of recognition. Cog-
nition, 18(1-3):65–96, 1984.

[4] X. Jiang et al. Distance measures for image segmenta-
tion evaluation. EURASIP JASP, pages 1–10, 2006.

[5] D. H. Kim et al. A new shape decomposition scheme
for graph-based representation. Pattern Recognition,
38:673–689, 2005.

[6] L. J. Latecki and R. Lakämper. Convexity rule for
shape decomposition based on discrete contour evolu-
tion. CVIU, 73:441–454, 1999.

[7] S. Lewin, X. Jiang, and A. Clausing. A clustering-based
ensemble technique for shape decomposition. (in prepa-
ration).

[8] J.-M. Lien and N. M. Amato. Approximate convex de-
composition of polygons. Comput. Geom. Theory Appl.,
35:100–123, 2006.

[9] H. Liu et al. Convex shape decomposition. In Proc.
CVPR, pages 97–104, 2010.

[10] D. Martin et al. Learning to detect natural image bound-
aries using local brightness, color, and texture cues.
IEEE T-PAMI, 26(5):530–539, 2004.

[11] X. Mi and D. DeCarlo. Separating parts from 2d shapes
using relatability. In Proc. ICCV, pages 1–8, 2007.

[12] Z. Ren et al. Minimum near-convex decomposition for
robust shape representation. In Proc. ICCV, pages 303–
310, 2011.

[13] J. Zeng et al. 2D shape decomposition based on com-
bined skeleton-boundary features. In Proc. ISVC, pages
682–691, 2008.

3699

Hamming (DH ) Jaccard (J)
Comb 0.069 0.186
ACD 0.092 0.251
IFD 0.112 0.267
MD 0.126 0.328
SD 0.131 0.335

DCE 0.188 0.466

Table 2. Average distances over the
benchmark database. Only the ’majority-
voted’ decomposition is used.

Comb ACD IFD MD SD DCE
Rank 1 2 3 4 5 6

Table 3. Comparison based on cut dis-
crepancy (DC).

performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.

Comb ACD

IFD MD

SD DCE

Figure 2. Decompositions of three shapes
generated by involved algorithms.

Acknowledgement

The authors thank J.-M. Lien for providing his pro-
gram [8] for our tests.

References

[1] J. DeWinter and J. Wagemans. Segmentation of object
outlines into parts: A large-scale integrative study. Cog-
nition, 99:275–325, 2006.

[2] T. Dey et al. Shape segmentation and matching with
flow discretization. LNCS, 2748:25–36, 2003.

[3] D. Hoffman and W. Richards. Parts of recognition. Cog-
nition, 18(1-3):65–96, 1984.

[4] X. Jiang et al. Distance measures for image segmenta-
tion evaluation. EURASIP JASP, pages 1–10, 2006.

[5] D. H. Kim et al. A new shape decomposition scheme
for graph-based representation. Pattern Recognition,
38:673–689, 2005.

[6] L. J. Latecki and R. Lakämper. Convexity rule for
shape decomposition based on discrete contour evolu-
tion. CVIU, 73:441–454, 1999.

[7] S. Lewin, X. Jiang, and A. Clausing. A clustering-based
ensemble technique for shape decomposition. (in prepa-
ration).

[8] J.-M. Lien and N. M. Amato. Approximate convex de-
composition of polygons. Comput. Geom. Theory Appl.,
35:100–123, 2006.

[9] H. Liu et al. Convex shape decomposition. In Proc.
CVPR, pages 97–104, 2010.

[10] D. Martin et al. Learning to detect natural image bound-
aries using local brightness, color, and texture cues.
IEEE T-PAMI, 26(5):530–539, 2004.

[11] X. Mi and D. DeCarlo. Separating parts from 2d shapes
using relatability. In Proc. ICCV, pages 1–8, 2007.

[12] Z. Ren et al. Minimum near-convex decomposition for
robust shape representation. In Proc. ICCV, pages 303–
310, 2011.

[13] J. Zeng et al. 2D shape decomposition based on com-
bined skeleton-boundary features. In Proc. ISVC, pages
682–691, 2008.

3699

160 S. Lewin, X. Jiang, and A. Clausing

Table 2. Average dissimilarity measures over the benchmark database

all GT instances majority-voted

Hamming Jaccard Hamming Jaccard

ACD 0.128 0.323 0.092 0.251
IFD 0.145 0.350 0.112 0.267
MD 0.151 0.371 0.126 0.328
SD 0.163 0.402 0.131 0.335
DCE 0.208 0.497 0.188 0.466

ACD/IFD/MD/SD 0.114 0.302 0.069 0.190
ACD/IFD/MD/DCE 0.117 0.305 0.074 0.201
ACD/IFD/SD/DCE 0.118 0.311 0.069 0.188
ACD/MD/SD/DCE 0.117 0.305 0.076 0.206
IFD/MD/SD/DCE 0.121 0.317 0.076 0.206

ACD/IFD/MD/SD/DCE 0.111 0.288 0.069 0.186

ACD IFD

MD SD

DCE ACD/IFD/MD/SD/DCE

Fig. 4. Decompositions of four shapes generated by involved algorithms

decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.
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cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter
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performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.
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presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
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cut, which separates the front wheel of motorcycle in
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4 Conclusion
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quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
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In future we intend to extend the number of shape
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posed framework is general enough to be extended to
the 3D case.

Comb ACD

IFD MD

SD DCE

Figure 2. Decompositions of three shapes
generated by involved algorithms.

Acknowledgement

The authors thank J.-M. Lien for providing his pro-
gram [8] for our tests.

References

[1] J. DeWinter and J. Wagemans. Segmentation of object
outlines into parts: A large-scale integrative study. Cog-
nition, 99:275–325, 2006.

[2] T. Dey et al. Shape segmentation and matching with
flow discretization. LNCS, 2748:25–36, 2003.

[3] D. Hoffman and W. Richards. Parts of recognition. Cog-
nition, 18(1-3):65–96, 1984.

[4] X. Jiang et al. Distance measures for image segmenta-
tion evaluation. EURASIP JASP, pages 1–10, 2006.

[5] D. H. Kim et al. A new shape decomposition scheme
for graph-based representation. Pattern Recognition,
38:673–689, 2005.

[6] L. J. Latecki and R. Lakämper. Convexity rule for
shape decomposition based on discrete contour evolu-
tion. CVIU, 73:441–454, 1999.

[7] S. Lewin, X. Jiang, and A. Clausing. A clustering-based
ensemble technique for shape decomposition. (in prepa-
ration).

[8] J.-M. Lien and N. M. Amato. Approximate convex de-
composition of polygons. Comput. Geom. Theory Appl.,
35:100–123, 2006.

[9] H. Liu et al. Convex shape decomposition. In Proc.
CVPR, pages 97–104, 2010.

[10] D. Martin et al. Learning to detect natural image bound-
aries using local brightness, color, and texture cues.
IEEE T-PAMI, 26(5):530–539, 2004.

[11] X. Mi and D. DeCarlo. Separating parts from 2d shapes
using relatability. In Proc. ICCV, pages 1–8, 2007.

[12] Z. Ren et al. Minimum near-convex decomposition for
robust shape representation. In Proc. ICCV, pages 303–
310, 2011.

[13] J. Zeng et al. 2D shape decomposition based on com-
bined skeleton-boundary features. In Proc. ISVC, pages
682–691, 2008.

3699

Hamming (DH ) Jaccard (J)
Comb 0.069 0.186
ACD 0.092 0.251
IFD 0.112 0.267
MD 0.126 0.328
SD 0.131 0.335

DCE 0.188 0.466

Table 2. Average distances over the
benchmark database. Only the ’majority-
voted’ decomposition is used.

Comb ACD IFD MD SD DCE
Rank 1 2 3 4 5 6

Table 3. Comparison based on cut dis-
crepancy (DC).

performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.

Comb ACD

IFD MD

SD DCE

Figure 2. Decompositions of three shapes
generated by involved algorithms.

Acknowledgement

The authors thank J.-M. Lien for providing his pro-
gram [8] for our tests.

References

[1] J. DeWinter and J. Wagemans. Segmentation of object
outlines into parts: A large-scale integrative study. Cog-
nition, 99:275–325, 2006.

[2] T. Dey et al. Shape segmentation and matching with
flow discretization. LNCS, 2748:25–36, 2003.

[3] D. Hoffman and W. Richards. Parts of recognition. Cog-
nition, 18(1-3):65–96, 1984.

[4] X. Jiang et al. Distance measures for image segmenta-
tion evaluation. EURASIP JASP, pages 1–10, 2006.

[5] D. H. Kim et al. A new shape decomposition scheme
for graph-based representation. Pattern Recognition,
38:673–689, 2005.

[6] L. J. Latecki and R. Lakämper. Convexity rule for
shape decomposition based on discrete contour evolu-
tion. CVIU, 73:441–454, 1999.

[7] S. Lewin, X. Jiang, and A. Clausing. A clustering-based
ensemble technique for shape decomposition. (in prepa-
ration).

[8] J.-M. Lien and N. M. Amato. Approximate convex de-
composition of polygons. Comput. Geom. Theory Appl.,
35:100–123, 2006.

[9] H. Liu et al. Convex shape decomposition. In Proc.
CVPR, pages 97–104, 2010.

[10] D. Martin et al. Learning to detect natural image bound-
aries using local brightness, color, and texture cues.
IEEE T-PAMI, 26(5):530–539, 2004.

[11] X. Mi and D. DeCarlo. Separating parts from 2d shapes
using relatability. In Proc. ICCV, pages 1–8, 2007.

[12] Z. Ren et al. Minimum near-convex decomposition for
robust shape representation. In Proc. ICCV, pages 303–
310, 2011.

[13] J. Zeng et al. 2D shape decomposition based on com-
bined skeleton-boundary features. In Proc. ISVC, pages
682–691, 2008.

3699

160 S. Lewin, X. Jiang, and A. Clausing

Table 2. Average dissimilarity measures over the benchmark database

all GT instances majority-voted

Hamming Jaccard Hamming Jaccard

ACD 0.128 0.323 0.092 0.251
IFD 0.145 0.350 0.112 0.267
MD 0.151 0.371 0.126 0.328
SD 0.163 0.402 0.131 0.335
DCE 0.208 0.497 0.188 0.466

ACD/IFD/MD/SD 0.114 0.302 0.069 0.190
ACD/IFD/MD/DCE 0.117 0.305 0.074 0.201
ACD/IFD/SD/DCE 0.118 0.311 0.069 0.188
ACD/MD/SD/DCE 0.117 0.305 0.076 0.206
IFD/MD/SD/DCE 0.121 0.317 0.076 0.206

ACD/IFD/MD/SD/DCE 0.111 0.288 0.069 0.186

ACD IFD

MD SD

DCE ACD/IFD/MD/SD/DCE

Fig. 4. Decompositions of four shapes generated by involved algorithms

decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.
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presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
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the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
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tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
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In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
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Table 2. Average dissimilarity measures over the benchmark database

all GT instances majority-voted

Hamming Jaccard Hamming Jaccard

ACD 0.128 0.323 0.092 0.251
IFD 0.145 0.350 0.112 0.267
MD 0.151 0.371 0.126 0.328
SD 0.163 0.402 0.131 0.335
DCE 0.208 0.497 0.188 0.466

ACD/IFD/MD/SD 0.114 0.302 0.069 0.190
ACD/IFD/MD/DCE 0.117 0.305 0.074 0.201
ACD/IFD/SD/DCE 0.118 0.311 0.069 0.188
ACD/MD/SD/DCE 0.117 0.305 0.076 0.206
IFD/MD/SD/DCE 0.121 0.317 0.076 0.206

ACD/IFD/MD/SD/DCE 0.111 0.288 0.069 0.186

ACD IFD

MD SD

DCE ACD/IFD/MD/SD/DCE

Fig. 4. Decompositions of four shapes generated by involved algorithms

decompositions. In addition, a lot of perceptually unreasonable cuts are rejected.
For example, DCE produces a lot of unimportant cuts, which are not contained
in the combined decomposition.

5 Conclusion

Although there exist quite a number of shape decompositions algorithms, mul-
tiple decomposition combination has not been studied before. In this paper we
presented a clustering-based ensemble solution for shape decomposition. A re-
cently published performance evaluation framework consisting of a benchmark
database with manual ground truth together with evaluation measures was used
to demonstrate the benefit of the proposed ensemble technique. We will make
the source code for our decomposition ensemble method publicly available.

The proposed ensemble technique is useful in its right to improve the decom-
position performance. In addition, it can also be adopted to solve the parameter

Hamming (DH ) Jaccard (J)
Comb 0.069 0.186
ACD 0.092 0.251
IFD 0.112 0.267
MD 0.126 0.328
SD 0.131 0.335

DCE 0.188 0.466

Table 2. Average distances over the
benchmark database. Only the ’majority-
voted’ decomposition is used.

Comb ACD IFD MD SD DCE
Rank 1 2 3 4 5 6

Table 3. Comparison based on cut dis-
crepancy (DC).

performs single approaches. This superiority of com-
bination is attributed to the fact that they can compen-
sate absence of some important cut. For example, the
cut, which separates the front wheel of motorcycle in
Fig. 2 (second shape), is not created by approaches
IFD and MD. The absence of this cut results from the
non-appropriately selected parameter, which controls
the post-processing merging in both approaches. How-
ever, this cut is contained in the combined decomposi-
tion for this shape. On the other hand, a lot of percep-
tually unreasonable cuts are rejected. For example, the
approaches SD and DCE produce a lot of unimportant
cuts, which are not contained in the combined decom-
position.

4 Conclusion

In this work we have presented a framework for
quantitative performance evaluation of shape decom-
position algorithms, which fills a gap in the current
literature. It is of supervised nature and based on a
benchmark database from a large-scale psychological
study. We have discussed various variants of dissimilar-
ity functions for comparing two decompositions. A pre-
liminary comparison study using five shape decomposi-
tion methods and an ensemble technique has demon-
strated the usefulness of our approach. In particular, the
quantitative results well coincide with visual compari-
son of decompositions.

In future we intend to extend the number of shape
decomposition methods for comparison. Also, the pro-
posed framework is general enough to be extended to
the 3D case.

Comb ACD

IFD MD

SD DCE

Figure 2. Decompositions of three shapes
generated by involved algorithms.
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Figure 12. More results

Figure 13. Decomposition examples. Row A contains five shapes
from [23]. Row B shows decompositions into neck-based and
limb-based parts [23]; Row C are the parts marked by human sub-
jects [23]; Row D shows the results using our algorithm.

can find a wider range of parts with a single rule, including
parts based on the short-cut rule [26] such as the tail of the
elephant. Having this diverse array of parts opens up new
applications in shape analysis.

6. Discussion and Conclusion
We have presented a new model for separating parts from

2D shapes, based on two cuts. We can cut the shape so
what remains has the simplest possible structure. Alterna-
tively, we can cut out the part so that the part itself takes
on a simple shape. These cuts are different, but both can be
characterized using the differential geometry of smoothed
local symmetries and relatability. They do not directly give
rise to a segmentation of the shape; a point inside the shape
may associate with the part, the remainder, neither, or both.

Our work relies on an appropriate model of relatabil-
ity, which is essentially a measure of contour grouping
strength—we use a simple model from [24]. One avenue for
improvement can come from studies on visual association

Figure 14. Ordering parts by radius can produce unintuitive results.
(The numbers on the parts indicate deletion order.)

fields, which suggest that other geometric properties are rel-
evant, such as the change in curvatures [12]. Psychophysi-
cal studies of 2D shape that explicitly represent transitions
could also produce interesting findings. One possibility is
to revisit the study by De Winter and Wagemans [5], and
explicitly question the user about transition boundaries.

Section 5 shows how our model can be applied to com-
pute the structural representation of a shape. However, the
proposed method, which orders the deletion by the radius,
can produce undesired results. Figure 14 shows two shapes
with similar structure to the leaf example in the second col-
umn of Figure 13—in these examples, however, the stem is
made thicker, so that the branch is deleted first. This results
in the main branch being split (inappropriately) into two
parts. Simple strategies that exclude transitions with non-
negative curvatures work for the branch on the left, but not
on the right. Thus, further investigations of disambiguat-
ing the part structure are necessary. We also intend to ex-
plore applications of our new part analysis in interfaces for
sketching, manipulating and depicting shape.
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made thicker, so that the branch is deleted first. This results
in the main branch being split (inappropriately) into two
parts. Simple strategies that exclude transitions with non-
negative curvatures work for the branch on the left, but not
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Fig. 7. Results comparison. The first row has five shapes from [9]. The second row shows the
results of our algorithm. The third row demonstrates the Prasad’s CDT decomposition result [15].
The last row is the results of neck-based and limbed-based method [9].

The result in [8] shows the trend that it was harder for observers to identify the
segments of shapes shown at the bottom and left side compared to those at the top and
right side of figure 4. For example, only about 40−50 percent of the observers identified
the defined segment in (row/column) 3,1 and 4,1 as ‘significant’.

Figure 5 depicts the parts of strongest protrusion resulting from our segmentation. It
shows a significant similarity to figure 4: the parts being detected as ‘strong’ parts in
our system are those more easily detected in 4. If a segment is significant enough, it is
likely to be decomposed as a part and the remaining forms another part (shown in row
1). In some cases our decomposition detects additional parts of comparable protrusion
strength, e.g. the first two shapes in row 2. Perceptually, these are comparable to the
tested parts. In the case of weak parts (fig. 5, (row/column) 3,1 and 4,1), the parts can
not be detected. Hence the entire result follows the trend mentioned above.

4.2 Experiment on Different Shapes

This experiment shows decompositions of different shapes, taken from [9], [12] and
[15]. Figure 6 shows some results of the proposed algorithm. The consistent
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Figure 9. Row A demonstrates the results in [13]; Row B demon-
strates the results of our method

results using their method; Row B is the results using our
method. Since some perceptual parts have large concavity,
our method will decompose them into multiple parts, for
example, the leg and tail of the kangaroo in row B.

Fig. 10 compares our methods with Reeb graph (col-
umn B). The problem with Reeb graph is that it can just
capture partial information of an object. Since our method
utilizes multiple Reeb graphs, thus, more information, es-
pecially all important information is preserved. We observe
that no Reeb graph theory exists that allows for combination
of multiple Reeb graphs. Column D illustrates the convex
graph obtained by our method. In Fig. 10, column A con-
tains five shapes from MPEG-7 shape database. Column B
illustrates their Reeb graphs, using height functions along
vertical direction as Morse functions. Column C shows the
decomposition results by our method, red lines are the cuts.
Column D illustrates the convex graphs of these shapes.
According to (4), when the costs of all cuts are nearly iden-
tical, we seek for a minimal number of cuts. The second
image (fork) illustrates such situation. There are just four
cuts; the second branch and the center part are in one part.

Fig. 11 compares the approximate convex results of
our method with the method proposed by Jyh-Ming Lien
[11]. The second row shows the decomposed results of our
method. Both methods can limit the concavity of the de-
composed parts, although the definitions of concavity are
different. The advantage of our method is that it can guar-
antee the number of the cuts is minimal.

Fig. 12 demonstrates more 2D decomposed shapes from
MPEG-7 shape database. For some objects, we can decom-
pose them into meaningful parts; but in many situations, it
will decompose a meaningful part into many approximate
convex sub-parts.

Fig. 13 demonstrates some decomposed 3D shapes.
Most of the obtained parts seem meaningful. However, in
the human model, the body and a leg belong to the same
part; this is because the aim of our method is to decompose
an object into approximate convex parts, it cannot guarantee
that all decomposed parts are meaningful.

Figure 10. Reeb graphs and convex graphs. Column A contains
five shapes from MPEG-7 shape database. Column B illustrates
their Reeb graphs, using height functions along vertical direction
as Morse functions. Column C shows the decomposition results
by our method, red lines are the final cuts. Column D illustrates
the convex graphs of these shapes

Figure 11. The results of approximate convex decomposition. The
first row is the results in [11] and the second row is the result of
our method

5. Conclusion

In this paper, we propose a novel method that can de-
compose an object into approximately convex parts. The
decomposition is achieved by minimizing total cost of the
cuts under some concavity constraints. Thus, it usually re-
sults in the number of decomposed parts is minimal. Our
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TABLE I: Comparison of decomposition results on S & V data set. H represents
the overall similarity between C and human decomposition. Higher is better.

Method |C| µmasked µunmasked H
ACD [17] 4.18 3.49 0.69 6.85
CSD [18] 3.80 3.09 0.78 4.72

Ours 4.07 3.77 0.66 8.54
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(c) (d)

Fig. 7: The decomposition results by the proposed method, with (a) tDCE = 0.1, (b)
tDCE = 0.5, (c) tDCE = 1 and (d) tDCE = 3, respectively. The simplified polygons
are in blue dashed lines while the determined part-cuts are in red solid lines.

possess clearly defined perceptual meanings and have been
discussed accordingly when they are introduced. Other pa-
rameters include the stopping parameter tDCE of DCE, the
number of directions nd for generating single-minimum part-
cut hypotheses, and the threshold th1 associated with the
neighborhood histogram.

The parameter tDCE tells how similar the simplified polygon
with the origin shape boundary. Most discussions in Section II
are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.

Fig. 8(c) summaries the impact of tDCE on the performance
on the S & V data set. The average number of part-cuts
|C| is always not far from the psychophysical result of 3.97.
The highest H is obtained (with tDCE around 0.1) when |C|
approximately fits it. It also shows that the average number of
m− points n is always small (less than 20), which guarantees
the low complexity of the proposed algorithm.

For comparison, we also plot the influence of τ to ACD and
ε to CSD (τ and ε are both thresholds for concavity similar
to tDCE) in Fig. 8 (a) and (b), respectively. In (a), |C| is very
large at a small τ and decreases almost exponentially when τ

TABLE II: The score of H (left) and |C| (right) for the S & V data set based on
different pairs of parameters.

th1

nd 8 16 24 32

0.2 8.48 / 4.23 8.44 / 4.51 8.40 / 4.61 8.51 / 4.82
0.4 8.59 / 3.93 8.54 / 4.07 8.59 / 4.23 8.35 / 4.32
0.6 8.33 / 3.86 8.35 / 3.95 8.34 / 4.08 8.10 / 4.18
0.8 8.33 / 3.78 8.28 / 3.91 8.24 / 3.98 8.01 / 4.10

Fig. 9: From top to bottom: decomposition results of [22], [18], [17] and our method.

increases. The highest H is obtained when |C| is three times
larger than the psychophysical results. It is lower when |C|
reaches 3.97 with τ being around 10. In (b), H keeps lower
than 5, and |C| reaches 3.97 with ε being around 0.03.

We also evaluate the influence of the other two parameters
nd and th1 on the S & V data set. In the experiments, nd
varies from 8 to 32 with an increase of 8 at each step and th1
ranges from 0.2 to 0.8 with an increase of 0.2 at each step.

The results are reported in Table II. For H, the higher
is better, and for |C|, the closer to 3.97 is better. The best
parameter settings are nd = 8 and th1 = 0.4. We can see that
nd = 16 is usually sufficient for generating single-minimum
part-cut hypotheses. When nd > 16, not only the complexity
increases, but the decomposition results are also less consistent
with the psychological results.

C. More results

To further evaluate the visual naturalness of the proposed
algorithm, we compare the decomposition results of [22], [18],
[17] and our method in Fig. 9. As we can see, the first and
the fourth row produce similar and intuitive results, while the
second and the third row may parse a long bend (e.g., the tail
of the kangaroo) into parts.

Fig. 10 compares the decomposition results of some shapes
from the MPEG-7 shape database produced by ACD [17],
CSD [18] and our method. It can be seen that our method
produces less part-cuts and the results are more natural.

Fig. 11 demonstrates the robustness of our method in the
presence of noise, occlusion, articulation and rotation. We
deal with noise by increasing tDCE. As in the first column,
the noised “T” shape is firstly de-noised to a closed polygon
(drawn in red lines) and then decomposed into two parts. We
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varies from 8 to 32 with an increase of 8 at each step and th1
ranges from 0.2 to 0.8 with an increase of 0.2 at each step.

The results are reported in Table II. For H, the higher
is better, and for |C|, the closer to 3.97 is better. The best
parameter settings are nd = 8 and th1 = 0.4. We can see that
nd = 16 is usually sufficient for generating single-minimum
part-cut hypotheses. When nd > 16, not only the complexity
increases, but the decomposition results are also less consistent
with the psychological results.

C. More results

To further evaluate the visual naturalness of the proposed
algorithm, we compare the decomposition results of [22], [18],
[17] and our method in Fig. 9. As we can see, the first and
the fourth row produce similar and intuitive results, while the
second and the third row may parse a long bend (e.g., the tail
of the kangaroo) into parts.

Fig. 10 compares the decomposition results of some shapes
from the MPEG-7 shape database produced by ACD [17],
CSD [18] and our method. It can be seen that our method
produces less part-cuts and the results are more natural.

Fig. 11 demonstrates the robustness of our method in the
presence of noise, occlusion, articulation and rotation. We
deal with noise by increasing tDCE. As in the first column,
the noised “T” shape is firstly de-noised to a closed polygon
(drawn in red lines) and then decomposed into two parts. We
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TABLE I: Comparison of decomposition results on S & V data set. H represents
the overall similarity between C and human decomposition. Higher is better.

Method |C| µmasked µunmasked H
ACD [17] 4.18 3.49 0.69 6.85
CSD [18] 3.80 3.09 0.78 4.72

Ours 4.07 3.77 0.66 8.54
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(c) (d)

Fig. 7: The decomposition results by the proposed method, with (a) tDCE = 0.1, (b)
tDCE = 0.5, (c) tDCE = 1 and (d) tDCE = 3, respectively. The simplified polygons
are in blue dashed lines while the determined part-cuts are in red solid lines.

possess clearly defined perceptual meanings and have been
discussed accordingly when they are introduced. Other pa-
rameters include the stopping parameter tDCE of DCE, the
number of directions nd for generating single-minimum part-
cut hypotheses, and the threshold th1 associated with the
neighborhood histogram.

The parameter tDCE tells how similar the simplified polygon
with the origin shape boundary. Most discussions in Section II
are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.

Fig. 8(c) summaries the impact of tDCE on the performance
on the S & V data set. The average number of part-cuts
|C| is always not far from the psychophysical result of 3.97.
The highest H is obtained (with tDCE around 0.1) when |C|
approximately fits it. It also shows that the average number of
m− points n is always small (less than 20), which guarantees
the low complexity of the proposed algorithm.

For comparison, we also plot the influence of τ to ACD and
ε to CSD (τ and ε are both thresholds for concavity similar
to tDCE) in Fig. 8 (a) and (b), respectively. In (a), |C| is very
large at a small τ and decreases almost exponentially when τ

TABLE II: The score of H (left) and |C| (right) for the S & V data set based on
different pairs of parameters.
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0.2 8.48 / 4.23 8.44 / 4.51 8.40 / 4.61 8.51 / 4.82
0.4 8.59 / 3.93 8.54 / 4.07 8.59 / 4.23 8.35 / 4.32
0.6 8.33 / 3.86 8.35 / 3.95 8.34 / 4.08 8.10 / 4.18
0.8 8.33 / 3.78 8.28 / 3.91 8.24 / 3.98 8.01 / 4.10
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MPEG-7 ψ=0.005R ψ=0.01R ψ=0.03R ψ=0.06R
dataset ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓

bat 14.3% 8.9% 20.8% 11.3% 16.2% 6.8% 8.6% 6.5%
beetle 23.8% 10.3% 22.9% 9.0% 21.9% 16.0% 19.3% 14.4%
bird 18.5% 13.6% 23.8% 12.5% 12.8% 7.6% 17.4% 10.6%

butterfly 4.4% 5.8% 13.1% 7.2% 16.9% 8.8% 32.7% 12.9%
camel 16.1% 10.5% 15.2% 3.3% 21.1% 9.5% 21.3% 4.8%

carriage 5.5% 3.7% 13.8% 9.2% 15.6% 9.5% 18.4% 13.3%
cattle 24.9% 14.6% 24.5% 10.7% 27.4% 8.9% 23.0% 12.3%

chicken 19.0% 10.0% 23.1% 15.2% 24.0% 10.5% 3.1% 5.2%
chopper 8.9% 7.7% 16.2% 10.4% 22.1% 10.7% 17.4% 11.3%
crown 16.0% 9.2% 20.7% 11.9% 27.8% 14.6% 19.4% 16.7%
deer 18.0% 14.5% 24.2% 10.5% 15.3% 4.2% 22.6% 13.3%
dog 23.8% 15.4% 18.8% 7.6% 24.5% 9.2% 15.7% 10.5%

elephant 24.1% 12.0% 24.0% 8.9% 24.9% 9.7% 25.2% 7.8%
fly 11.9% 9.2% 8.9% 5.6% 4.2% 3.9% 10.6% 8.4%

horse 20.1% 8.0% 23.8% 5.1% 19.8% 1.1% 18.8% 6.1%
horseshoe 26.1% 18.6% 21.9% 11.7% 23.5% 14.8% 12.2% 12.2%

lizard 18.2% 10.4% 15.9% 10.0% 27.5% 15.2% 11.7% 7.3%
Misk 29.8% 30.7% 24.2% 11.9% 25.8% 20.3% 13.2% 15.4%

Mickey 24.6% 13.4% 14.0% 10.5% 19.8% 12.9% 17.3% 8.5%
spring 22.6% 12.6% 25.1% 13.7% 24.5% 15.8% 25.7% 6.9%

Table 2. The average reduction rate of MNCD comparing with
ACD [10] and CSD [12], on the MPEG-7 dataset, where R is the
radius of the shape’s minimum enclosing disk.

Figure 7. The first row shows the decomposition results of [14],
and the second row shows the results of MNCD.

by Mi and Decarlo [14]. Mi’s method is specifically de-
signed to decompose 2D shapes into natural parts. The first
row are the decomposition results of their method, and the
second row are the results of MNCD. As we can see, when
considering the minima rule and short cut rule in our formu-
lation, our method decomposes shapes into parts with high
visual naturalness comparable to [14], such as the legs, head
and body of the animal, the leaf and stem of the tree, etc.

In Fig.11, more comparisons among ACD [10], CSD
[12] and our method are provided, with ψ=0.03R. The
decompositions of our method produce the least and more
natural recognition primitives. At this concavity tolerance,
MNCD decomposes the animals into primitives such as
head, body, legs and tail, and avoid decomposing them into
redundant parts as [10, 12].

Without introducing redundant parts, MNCD is robust to
local distortions, as shown in the first row of Fig.12. The ro-
bustness of our method is more obvious when there are large
local distortions as shown in the last row of Fig.1, while the
existing decomposition methods produce many redundant
noise parts. Besides, our MNCD imposes two perception
rules to guide the decomposition, thus it produces more nat-
ural parts, which makes MNCD robust to shape deforma-
tion, as illustrated in the second row of Fig.12.

Figure 8. Illustration of our hand gesture recognition using the
Kinect depth camera and MNCD. The first and second columns
are the color and depth image in the new dataset; the third column
is the image segmentations of hands; the last column is the MNCD
decompositions of the hand shapes.

Thanks to the robust shape representation of our MNCD,
it has a high potential for shape-based visual recognition
tasks. In the next section, we apply it to hand gesture recog-
nition.

4.2. Hand Gesture Recognition

For hand gesture recognition based HCI [5], usually the
color, texture, shading, and context information are not
robust for successful recognition, while the shape feature
alone is often sufficient. However, the vision-based hand
gesture recognition is extremely hard, because of two pri-
mary problems: 1. It is hard to segment the hand out of the
image with cluttered background; 2. Even with the shape of
a hand, existing representations are not robust enough for
gesture recognition. For example, the contour-based and
the skeleton-based representations can be affected by large
local noises.

With the advent of Kinect depth camera [1], we can
accurately segment the hand shape using both image and
depth information, as shown in Fig.8. After that, we can
use MNCD to robustly represent the hand shape for ges-
ture recognition. With the Kinect depth camera, we col-
lect a new hand gesture dataset with both color images and
depth maps. Our dataset contains 3 hand gesture categories,
namely Rock, Paper and Scissors, each category has 50
samples. For each category, an example is shown in the
first two columns of Fig.8.

However, even with the help from the Kinect depth cam-
era, the image segmentation of the hand is not perfect. Due
to low-resolution, it easily introduces large local distortions
or other types of noises on the contour, as shown in the third
column of Fig.8. However, our MNCD is robust to handle
most of the variations, and decomposes hand shapes into
natural primitives such as fingers and palm. We can recog-
nize the hand gesture among Rock, Paper, Scissors by only
counting the number of parts. Suppose k is the number of
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samples. For each category, an example is shown in the
first two columns of Fig.8.

However, even with the help from the Kinect depth cam-
era, the image segmentation of the hand is not perfect. Due
to low-resolution, it easily introduces large local distortions
or other types of noises on the contour, as shown in the third
column of Fig.8. However, our MNCD is robust to handle
most of the variations, and decomposes hand shapes into
natural primitives such as fingers and palm. We can recog-
nize the hand gesture among Rock, Paper, Scissors by only
counting the number of parts. Suppose k is the number of
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TABLE I: Comparison of decomposition results on S & V data set. H represents
the overall similarity between C and human decomposition. Higher is better.

Method |C| µmasked µunmasked H
ACD [17] 4.18 3.49 0.69 6.85
CSD [18] 3.80 3.09 0.78 4.72

Ours 4.07 3.77 0.66 8.54

(a) (b)

(c) (d)

Fig. 7: The decomposition results by the proposed method, with (a) tDCE = 0.1, (b)
tDCE = 0.5, (c) tDCE = 1 and (d) tDCE = 3, respectively. The simplified polygons
are in blue dashed lines while the determined part-cuts are in red solid lines.

possess clearly defined perceptual meanings and have been
discussed accordingly when they are introduced. Other pa-
rameters include the stopping parameter tDCE of DCE, the
number of directions nd for generating single-minimum part-
cut hypotheses, and the threshold th1 associated with the
neighborhood histogram.

The parameter tDCE tells how similar the simplified polygon
with the origin shape boundary. Most discussions in Section II
are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.

Fig. 8(c) summaries the impact of tDCE on the performance
on the S & V data set. The average number of part-cuts
|C| is always not far from the psychophysical result of 3.97.
The highest H is obtained (with tDCE around 0.1) when |C|
approximately fits it. It also shows that the average number of
m− points n is always small (less than 20), which guarantees
the low complexity of the proposed algorithm.

For comparison, we also plot the influence of τ to ACD and
ε to CSD (τ and ε are both thresholds for concavity similar
to tDCE) in Fig. 8 (a) and (b), respectively. In (a), |C| is very
large at a small τ and decreases almost exponentially when τ

TABLE II: The score of H (left) and |C| (right) for the S & V data set based on
different pairs of parameters.

th1

nd 8 16 24 32

0.2 8.48 / 4.23 8.44 / 4.51 8.40 / 4.61 8.51 / 4.82
0.4 8.59 / 3.93 8.54 / 4.07 8.59 / 4.23 8.35 / 4.32
0.6 8.33 / 3.86 8.35 / 3.95 8.34 / 4.08 8.10 / 4.18
0.8 8.33 / 3.78 8.28 / 3.91 8.24 / 3.98 8.01 / 4.10

Fig. 9: From top to bottom: decomposition results of [22], [18], [17] and our method.

increases. The highest H is obtained when |C| is three times
larger than the psychophysical results. It is lower when |C|
reaches 3.97 with τ being around 10. In (b), H keeps lower
than 5, and |C| reaches 3.97 with ε being around 0.03.

We also evaluate the influence of the other two parameters
nd and th1 on the S & V data set. In the experiments, nd
varies from 8 to 32 with an increase of 8 at each step and th1
ranges from 0.2 to 0.8 with an increase of 0.2 at each step.

The results are reported in Table II. For H, the higher
is better, and for |C|, the closer to 3.97 is better. The best
parameter settings are nd = 8 and th1 = 0.4. We can see that
nd = 16 is usually sufficient for generating single-minimum
part-cut hypotheses. When nd > 16, not only the complexity
increases, but the decomposition results are also less consistent
with the psychological results.

C. More results

To further evaluate the visual naturalness of the proposed
algorithm, we compare the decomposition results of [22], [18],
[17] and our method in Fig. 9. As we can see, the first and
the fourth row produce similar and intuitive results, while the
second and the third row may parse a long bend (e.g., the tail
of the kangaroo) into parts.

Fig. 10 compares the decomposition results of some shapes
from the MPEG-7 shape database produced by ACD [17],
CSD [18] and our method. It can be seen that our method
produces less part-cuts and the results are more natural.

Fig. 11 demonstrates the robustness of our method in the
presence of noise, occlusion, articulation and rotation. We
deal with noise by increasing tDCE. As in the first column,
the noised “T” shape is firstly de-noised to a closed polygon
(drawn in red lines) and then decomposed into two parts. We
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rameters include the stopping parameter tDCE of DCE, the
number of directions nd for generating single-minimum part-
cut hypotheses, and the threshold th1 associated with the
neighborhood histogram.

The parameter tDCE tells how similar the simplified polygon
with the origin shape boundary. Most discussions in Section II
are based on the assumption that the polygon obtained by DCE
is an approximate version of the shape’s boundary. Thus, tDCE
should be small to maintain a high degree of similarity. We
examine the impact of this parameter on the final performance
of our method. As shown in Fig. 7, the proposed method works
well for different values of tDCE. With a small tDCE, the detail
of the shape boundary is kept, which in general introduces a
large number of small parts. When the value of tDCE increases,
the decomposition tends to miss more detail parts and tolerate
more distortions at the same time.

Fig. 8(c) summaries the impact of tDCE on the performance
on the S & V data set. The average number of part-cuts
|C| is always not far from the psychophysical result of 3.97.
The highest H is obtained (with tDCE around 0.1) when |C|
approximately fits it. It also shows that the average number of
m− points n is always small (less than 20), which guarantees
the low complexity of the proposed algorithm.

For comparison, we also plot the influence of τ to ACD and
ε to CSD (τ and ε are both thresholds for concavity similar
to tDCE) in Fig. 8 (a) and (b), respectively. In (a), |C| is very
large at a small τ and decreases almost exponentially when τ
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increases. The highest H is obtained when |C| is three times
larger than the psychophysical results. It is lower when |C|
reaches 3.97 with τ being around 10. In (b), H keeps lower
than 5, and |C| reaches 3.97 with ε being around 0.03.

We also evaluate the influence of the other two parameters
nd and th1 on the S & V data set. In the experiments, nd
varies from 8 to 32 with an increase of 8 at each step and th1
ranges from 0.2 to 0.8 with an increase of 0.2 at each step.

The results are reported in Table II. For H, the higher
is better, and for |C|, the closer to 3.97 is better. The best
parameter settings are nd = 8 and th1 = 0.4. We can see that
nd = 16 is usually sufficient for generating single-minimum
part-cut hypotheses. When nd > 16, not only the complexity
increases, but the decomposition results are also less consistent
with the psychological results.

C. More results

To further evaluate the visual naturalness of the proposed
algorithm, we compare the decomposition results of [22], [18],
[17] and our method in Fig. 9. As we can see, the first and
the fourth row produce similar and intuitive results, while the
second and the third row may parse a long bend (e.g., the tail
of the kangaroo) into parts.

Fig. 10 compares the decomposition results of some shapes
from the MPEG-7 shape database produced by ACD [17],
CSD [18] and our method. It can be seen that our method
produces less part-cuts and the results are more natural.

Fig. 11 demonstrates the robustness of our method in the
presence of noise, occlusion, articulation and rotation. We
deal with noise by increasing tDCE. As in the first column,
the noised “T” shape is firstly de-noised to a closed polygon
(drawn in red lines) and then decomposed into two parts. We
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Fig� �
� A comparisonof computedparts and perceived parts for a va�
riety of biological and nonsense shapes� The shapes are a representa�
tive subset of those used for the psychophysical experiments reported
in ��	
� Each box depicts the original shape �left�� the parts com�
puted by applying our algorithm �middle�� and the parts perceived
by a majority of the �� subjects �right�� Note that for shapes �A�
through �H�� the computed and perceived parts are in exact agree�
ment� Shapes �I�� �J�� and �K� illustrate discrepancies that occur due
to the existence of bent limbs� e�g�� those manifested as the kanga�
roo�s tail and the elephant�s trunk� Shape �L� illustrates the limits of
the algorithm�s performance when parts of low salience are admitted�
here a 
weak� neck which breaks o� the top part of the rabbit�s front
ear is computed� but is not perceived�

VIII� Discussion

The validity of our partitioning scheme can be mea�
sured against the principles it sought to satisfy� as well
as against human performance� Whereas we have previ�
ously discussed the former� Figure �� illustrates the lat�
ter� Despite a high degree of correspondence between com�
puted parts and perceived parts� we have observed two
minor classes of discrepancies between them� �� those due
to part�bend interactions� and �� those due to cognitive
knowledge of the underlying object� First� consider the
part�bend axis of Figure �� Observe how the perception of
the leftmost shape as a �sausage� with four parts changes
continuously to one of a snake with a single bent part�
Now consider Figure 
�� whereas perceptual evidence for
�trunks� and �tails� as parts is strong for the shapes on
the right of each box� leading to clearly partitioned limbs�
the evidence is greatly diminished for the shapes on the
left� due to bending� Our psychophysical experiments in�
dicate that in such situations� whereas subjects continue
to place one endpoint of a part�line at the negative cur�
vature minimum� the position of the second endpoint is
somewhat arbitrary 	
��� Such parts can only be recov�

ered under a more comprehensive framework 	���� Second�
cognitive knowledge in�uences part perception� e�g�� famil�
iarity with the underlying object for a recognizable shape�
and the existence of a semantic vocabulary for describing
its various components may cause a subject to break o�
parts� even when perceptual evidence is weak 	
���

IX� Conclusion

In conclusion� we comment on the relationship between
partitioning and recognition� Thus far� we have assumed
the availability of a �D shape� that which comes from the
projection of the occluding contour of an object� However�
it is well recognized that under general conditions the seg�
mentation of an image into regions corresponding to the
projections of distinct objects is not an easy task� In the
face of this di�culty� how can partitioning proceed� It is
clear that since segmentation is a di�cult task� a parti�
tioning scheme should be able to handle errors in the seg�
mentation process� partially correct segmentations� etc� To
this end the limbs�and�necks scheme� being robust to local
deformations and stable with slight global deformations�
is appropriately designed� A more complete answer� how�
ever� lies in viewing parts as an intermediate representation
that allows for the �ow of bottom�up as well as top�down
information� Consider that since part computations are lo�
cal� edges of the appropriate polarity can interact to form
necks and limbs prior to obtaining a segmentation of the
object� Figures �
� �� and ��� leading to a �parts receptive
�eld�� This constitutes the bottom�up �ow of information�
i�e�� from local edge hypotheses to the more global part
hypotheses� Now� part hypotheses can in turn play an
integral role in the segmentation process through the top�
down �ow of information� i�e�� a combination of likely parts
can lead to an object hypothesis� followed by a segmenta�
tion hypothesis for the image� Such a notion of parts may
be key in resolving the bottom�up�top�down bottleneck of
recognition�
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sured against the principles it sought to satisfy� as well
as against human performance� Whereas we have previ�
ously discussed the former� Figure �� illustrates the lat�
ter� Despite a high degree of correspondence between com�
puted parts and perceived parts� we have observed two
minor classes of discrepancies between them� �� those due
to part�bend interactions� and �� those due to cognitive
knowledge of the underlying object� First� consider the
part�bend axis of Figure �� Observe how the perception of
the leftmost shape as a �sausage� with four parts changes
continuously to one of a snake with a single bent part�
Now consider Figure 
�� whereas perceptual evidence for
�trunks� and �tails� as parts is strong for the shapes on
the right of each box� leading to clearly partitioned limbs�
the evidence is greatly diminished for the shapes on the
left� due to bending� Our psychophysical experiments in�
dicate that in such situations� whereas subjects continue
to place one endpoint of a part�line at the negative cur�
vature minimum� the position of the second endpoint is
somewhat arbitrary 	
��� Such parts can only be recov�

ered under a more comprehensive framework 	���� Second�
cognitive knowledge in�uences part perception� e�g�� famil�
iarity with the underlying object for a recognizable shape�
and the existence of a semantic vocabulary for describing
its various components may cause a subject to break o�
parts� even when perceptual evidence is weak 	
���

IX� Conclusion

In conclusion� we comment on the relationship between
partitioning and recognition� Thus far� we have assumed
the availability of a �D shape� that which comes from the
projection of the occluding contour of an object� However�
it is well recognized that under general conditions the seg�
mentation of an image into regions corresponding to the
projections of distinct objects is not an easy task� In the

of this di�culty� how can partitioning proceed� It is
that since segmentation is a di�cult task� a parti�
scheme should be able to handle errors in the seg�
process� partially correct segmentations� etc� To

end the limbs�and�necks scheme� being robust to local
deformations and stable with slight global deformations�
is appropriately designed� A more complete answer� how�
ever� lies in viewing parts as an intermediate representation
that allows for the �ow of bottom�up as well as top�down
information� Consider that since part computations are lo�
cal� edges of the appropriate polarity can interact to form
necks and limbs prior to obtaining a segmentation of the
object� Figures �
� �� and ��� leading to a �parts receptive
�eld�� This constitutes the bottom�up �ow of information�
i�e�� from local edge hypotheses to the more global part
hypotheses� Now� part hypotheses can in turn play an
integral role in the segmentation process through the top�
down �ow of information� i�e�� a combination of likely parts
can lead to an object hypothesis� followed by a segmenta�
tion hypothesis for the image� Such a notion of parts may
be key in resolving the bottom�up�top�down bottleneck of
recognition�
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Figure 7: Qualitative results on representative shapes of S&V [5] (left) and Kimia [25] (right)
datasets for a number of methods, including ground truth (GT), depicted as in Fig. 4c.

and not too far from CBE. All results are inferior on average evaluation against individual
subjects, which is expected as subjects are not always consistent. It is interesting that SB,
DCE are close to or even worse than the baseline of not cutting anywhere.

Qualitative evaluation. Fig. 7 illustrates qualitative results on a number of representative
shapes. Our method gives natural results on Kimia dataset and is the only one to capture
the ground truth for the bottom part of the rabbit correctly. It often tends to prefer cuts near
the mouth than on the neck. This is attributed to the shortcut rule which we observe is not
always enough, but our method is very open to using other measures. S&V is harder, but
still MAD yields the highest quality results comparing to the other individual methods. That
is, apart from the ensemble method CBE, which seeks consensus among all others.

5 Discussion

Both qualitative and quantitative evaluation suggests that an extremely simple computational
model based on an appropriate representation can be competitive comparing to more com-
plex models or ensemble methods. More than that, our model is inherently connected to
most rules suggested by human vision studies and highlights their connection. There are
more aspects that we have explored in the same model, which we have not been able to
expose here due to limited space, including an extended definition of concave corners that
captures semi-local boundary arcs and a proximity measure on part-cuts. Other aspects that
could be naturally incorporated are detection of bends, continuation of boundaries across
parts and local symmetry beyond what is captured by the medial axis. The fact that part-cut
selection is based on simple local decisions will enable the investigation of a more general
model beyond closed curves towards local feature detection on arbitrary natural images. For
instance, bitangents on isophotes (level sets of intensity) [21] can be seen as cuts on either
figure or ground shape, while distance map saddle points [2] correspond to necks [25]; our
work can provide for a richer set of cuts hence candidate local features.

Shape Decomposition

Minima rule
I A shape should be cut at points of negative minima of curvature [3]

I But these are exactly projection points of end vertices of the exterior medial axis [1]

I Moreover, one may get not just one boundary point but an entire arc, called a (concave) corner

I Without differentiation, an end-vertex with its two projection points determine the position, spatial extent,
orientation and strength of each concavity

From Fragments to Objects: Segmentation and Grouping in Vision24

however, that if the part boundaries are sharp, they force the part cuts to pass through them,

even if this means making slightly longer cuts, or making two cuts instead of one (see Figure 27b).

Another interaction between boundary strength and the short-cut rule can be seen in

Figure 28a. This shape has a narrow region in the middle defined by concave arcs of circles. Each

of these arcs is a region of negative minima of curvature so the minima rule by itself does not

specify any unique boundary point on them. Furthermore, these concave arcs have low

curvature, and hence low boundary strength. At the endpoints of these arcs are negative minima

of curvature with high boundary strength. The cuts joining these sharp negative minima are

slightly longer than the neck  cut in the middle; but these cuts are nevertheless preferred by

                                                                                                                     
8 We will discuss precise geometric factors that determine the strength of part boundaries in the section on
“Part Salience.”

(a) (b)

Figure 27. (a) When negative minima are weak, other factors such as cut length can sometimes
pull part cuts away from negative minima. (Adapted from Siddiqi & Kimia, 1995). (b) However,
when negative minima are sharp, they force the cuts to pass through them even if this means
making two cuts instead of one.

(a) (b)

Figure 28. Demonstrating the interaction between cut length and the strength of part boundaries.
In (a), the cuts at the sharp negative minima are preferred to the shorter cut at the low-curvature
arcs of circles. (Adapted from Braunstein et al., 1989.) In (b), the cut at the arcs of circles is
preferred because it is both shorter and involves boundaries with higher salience.
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(a) full ligature (b) semi-ligature (c) sharp (d) weak

Figure 3: (a) Full ligature on x. (b) Semi-ligature on x, y (in white) [1]. (c) Two nearby
sharp concavities result in two different cuts [26]. (d) Two nearby weak concavities should
ideally result in one cut; this is possible if their locale [9] is known (in green).

Minima. According to the minima rule [8], the shape X should be cut at points of negative
minima of curvature of its boundary parametrization α. In the theory of limbs and necks [25],
this rule is taken to mean that both cut endpoints are such minima points. However, the rule
has been subsequently relaxed by requiring that at least one of each cut endpoints have neg-
ative curvature [27]. This condition is contained in the standard definition of part-cuts [26].
This is in agreement with the earlier theory of ligatures [1] and more recent studies [17]. In
particular, given a set of minima points C, a full(semi)-ligature [1] on two points x, y ∈ C
(resp. one point x ∈ C) is the set of points z whose projection π(z) contains x, y (resp. x but
no other point of C). Commonly referred to as ligatures, these sets are subsets of the medial
axis and disconnect it such that subsequent shape reconstruction produces a rough decom-
position into parts. They are illustrated in Fig. 3a,b. Accordingly, double(single)-minima
cuts [17] are defined as having both endpoints (resp. exactly one endpoint) in the minima set
C. We follow the same idea.

But how is the minima set C exactly determined? All relevant studies assume a discrete
parametrization of shape boundary ∂X and compute negative minima of a discrete approxi-
mation of curvature. Apart from numerical sensitivity and the further assumption of a scale
parameter in every discrete derivative approximation, the limitation is that detected minima
are isolated points that provide no information on the spatial extent of concavities—referred
to as locale [9]—as illustrated in Fig. 3c,d. The background of section 2 specifies that end-
vertex projections of the exterior medial axis are either single points tangent to osculating
circles, or circular arcs. In practice, the two projection points determine a boundary arc that
always approximates a circular arc. We call this arc a concave corner or simply corner.
The radius of the circle is the inverse of the absolute curvature. The three points involved—
the end vertex and its two projection points—directly determine the position, spatial extent,
orientation and strength of the concavity, including both curvature and turning angle. All
information comes for free from the medial axis. Fig. 2b illustrates this idea.

Symmetry. Now potential cuts are determined by all pairs of points in two different corners.
Most relevant work actually examines all pairs [17, 25]. This is not only inefficient, but may
involve all sorts of new ad-hoc rules to resolve conflicts (e.g. that cuts do not intersect) as well
as solving an optimization problem. But the standard definition of part-cuts [26] includes the
additional condition that they cross an axis of local symmetry. We modify the condition such
that the cut endpoints are projection points of the same point of the interior medial axis (recall
that a cut lies in the shape). In most cases this is a stronger condition, but we observe that it
most often agrees with ground truth data from psychophysical experiments [5], as shown in
Fig. 4a-c. Combined with the minima rule, it implies that endpoints are exactly projection
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Symmetry
I A cut of a shape X is a line segment connecting two points of ∂X

I All prior work examines all possible pairs of points on ∂X as candidate cut endpoints; we only consider pairs
of points that are projection points of the same point of the interior medial axis

I A cut may have one or two corner points as endpoints, called single or double cut respectively

I Raw cuts: traverse interior medial axis collecting all pairs of projection points such that at least one lies on a
corner; this is stronger than requiring cuts to cross an axis of local symmetry [3]

raw cuts candidate cuts

Equivalence
I Select candidate cuts by applying equivalence rules on raw cuts

I Branch equivalence: two cuts on the same branch whose endpoints share at least one corner; double cuts
have priority over single cuts

I Corner equivalence: two (double) cuts whose endpoints lie on the same pair of corners; the cut with the
maximal protrusion strength is selected

Salience measures
I Protrusion strength: ratio of cut length to arc length; select cuts with protrusion less than p
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local convexity selected cuts

Local convexity & short-cut rule
I Most approaches seek the minimal number of cuts such that each shape part is approximately convex

I But negative minima of curvature are exactly points where the shape is locally maximally concave

I For each corner, we select independently the minimal number of cuts such that the interior angle of each
part is less than π + θ, where θ is a tolerance

I Priority given according to short-cut rule [4], but arbitrary salience measures apply

Dataset

I Snodgrass and Vanderwart (S&V) everyday object dataset contains 260 line drawings

I De Winter and Wagemans dataset [5] evaluates exactly segmentation of 88 object outlines

I The subset has been converted to smooth outlines and each segmented by 39.5 subjects on average

I For each shape there are 122.4 part-cuts, that is 3.1 cuts per subject on average

Majority Voting

I Part-cuts of human subjects are typically inconsistent:
evaluate on majority cuts

I Apply agglomerative clustering on all human cuts
according to arc distance

I Select cluster representatives by averaging endpoints
on the parametrization of the boundary curve

I Discard cluster with less than t votes

all subjects majority

References

[1] Choi et al. Mathematical theory of medial axis transform. Pacific Journal of Mathematics, 1997.
[2] Avrithis & Rapantzikos. The medial feature detector: stable regions from image boundaries. ICCV, 2011.
[3] Hoffman & Richards. Parts of recognition. Cognition, 1984.
[4] Singh et al. Parsing silhouettes: the short-cut rule. Perception and Psychophysics, 1999.
[5] De Winter & Wagemans. Segmentation of object outlines into parts. Cognition, 2006.

http://image.ntua.gr/iva/research/cuts Contact: papanelo@image.ntua.gr, iavr@image.ntua.gr

http://image.ntua.gr/iva/research/cuts

