

Related ideas & challenges

Problem formulation

- given a dataset X of n points in \mathbb{R}^d , find k cluster centroids minimizing distortion
- \blacktriangleright k-means
 - ► assignment step: for every point, find closest centroid
 - **update step:** given point assignments, update centroids

Approximations & speed-ups

- ► the assignment step is the bottleneck
- ► approximate k-means [Philbin et al. CVPR, 2007]: ANN to speed-up assignment step
- **binary** k-means [Gong et al. CVPR, 2015]: binarize points and centroids

Inverse search

- ► data remain fixed across iterations: index points, search for centroids
- ► search independently ranked retrieval [Broder et al. WSDM, 2014]

Compression of points and/or centroids

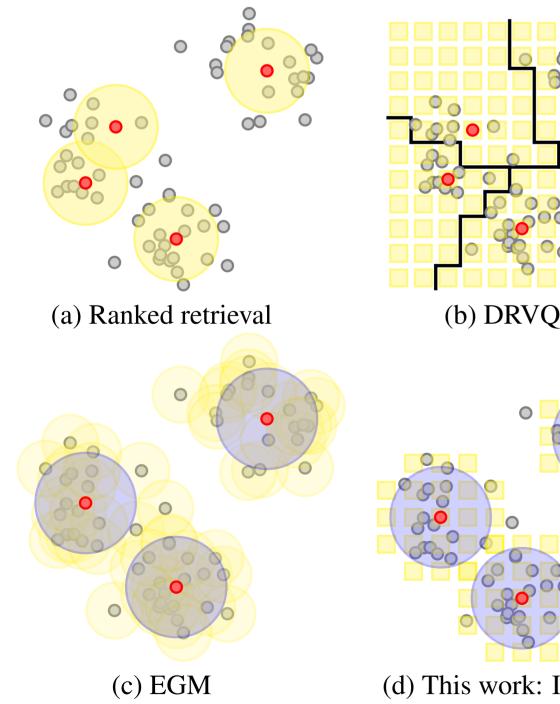
► dimensionality recursive vector quantization (DRVQ) [Avrithis, ICCV, 2013]

- ► borrows ideas from *inverted multi-index* [Babenko & Lempitsky, 2012]
- ► quantize points to centroids, adopt inverse search
- ► search is a propagation on a 2d-grid, each cell visited only once, joint priority queue
- **binary** *k*-means [Gong *et al.* CVPR, 2015]: binarization of points & centroids

Dynamic estimation of k

• expanding Gaussian mixtures (EGM) [Avrithis & Kalantidis, ECCV, 2012] ► estimation of cluster overlap, point-to-centroid search

Inverted Quantized *k*-means (IQ-means)



- (d) This work: IQ-means
- ► subspace quantization & search via multi-index
- ► inverse search, independent queries per centroid
- dynamic estimation of k

Source code: http://image.ntua.gr/iva/research/lopq/

Discarding original data

	1	2
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		

Upo
Mov
► for

Web-scale image clustering revisited

Yannis Avrithis[†], Yannis Kalantidis[‡], Evangelos Anagnostopoulos[†], Ioannis Z. Emiris[†]

[†]University of Athens, [‡]Yahoo Labs San Francisco

Quantization & Representation

Compressing the dataset

• express \mathbb{R}^d as the Cartesian product of two orthogonal subspaces, $S^1 \times S^2$, of d/2dimensions each – subject to optimization [Ge et al., 2013]

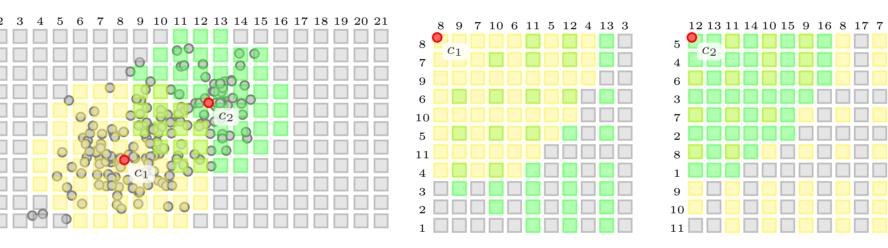
 \blacktriangleright train two sub-codebooks U^1, U^2 of size s independently on projections of sample data on S^1, S^2

► codebook $U = U^1 \times U^2$ contains $s \times s$ cells – can be seen as a discrete two dimensional grid [Babenko & Lempitsky, 2012]

▶ vector $x = (x^1, x^2)$ can be quantized to a cell $q(x) = (q^1(x^1), q^2(x^2))$, where $q^{\ell}(x^{\ell}) = \arg \min_{u^{\ell} \in U^{\ell}} ||x^{\ell} - u^{\ell}||$ for $\ell = 1, 2$

► for cell u_{α} , probability $p_{\alpha} = |X_{\alpha}|/n$, with $X_{\alpha} = \{x \in X : q(x) = u_{\alpha}\}$ ▶ the mean $\mu_{\alpha} = \frac{1}{|X_{\alpha}|} \sum_{x \in X_{\alpha}} x$ of all points in X_{α} is kept for each cell u_{α} \blacktriangleright cells with their sample mean μ_{α} and probability p_{α} replace the original data \blacktriangleright an arbitrary initial set C of k centroids is assumed

Centroid to cell search



search blocks for c_1 , c_2

visited cells on original grid

date Step

ving the centroids

▶ for all $c_m \in C$:

$$c_m \leftarrow \frac{1}{P_m} \sum_{\alpha \in A_m} p_\alpha \mu_\alpha,$$

where:

• $A_m = \{ \alpha \in I : a(u_\alpha) = m \}$: the indices of all cells assigned to c_m • $P_m = \sum_{\alpha \in A_m} p_{\alpha}$: the proportion of points assigned to centroid c_m , with $a(u) = \arg\min_{c_m \in C} \|u - c_m\|$

Assignment step

Multi-index search independently for every centroid

centroid-to-cell search: index cell means, search independently for every centroid ▶ for each centroid c_i , the w nearest sub-codewords are found in U^1, U^2 , and ordered by ascending distance to c_i , for i = 1, 2

 \blacktriangleright a $w \times w$ search block is thus determined for c_i

► the **multi-sequence** [Babenko & Lempitsky, 2012] algorithm is used for traversing the cells in the search block

• termination: count the total number of underlying points in visited cells, and terminates when this reaches a target number T

Dynamic estimation of k

Centroid-to-centroid search

- for each centroid m

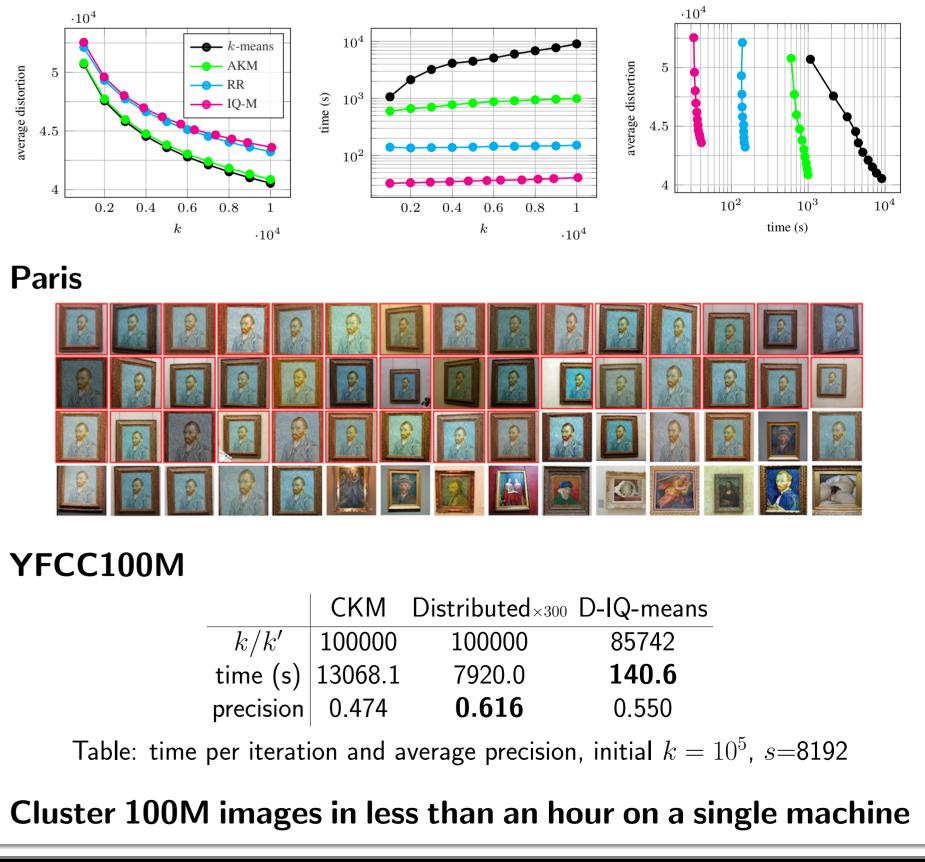
Centroid modeling

Centroid purging

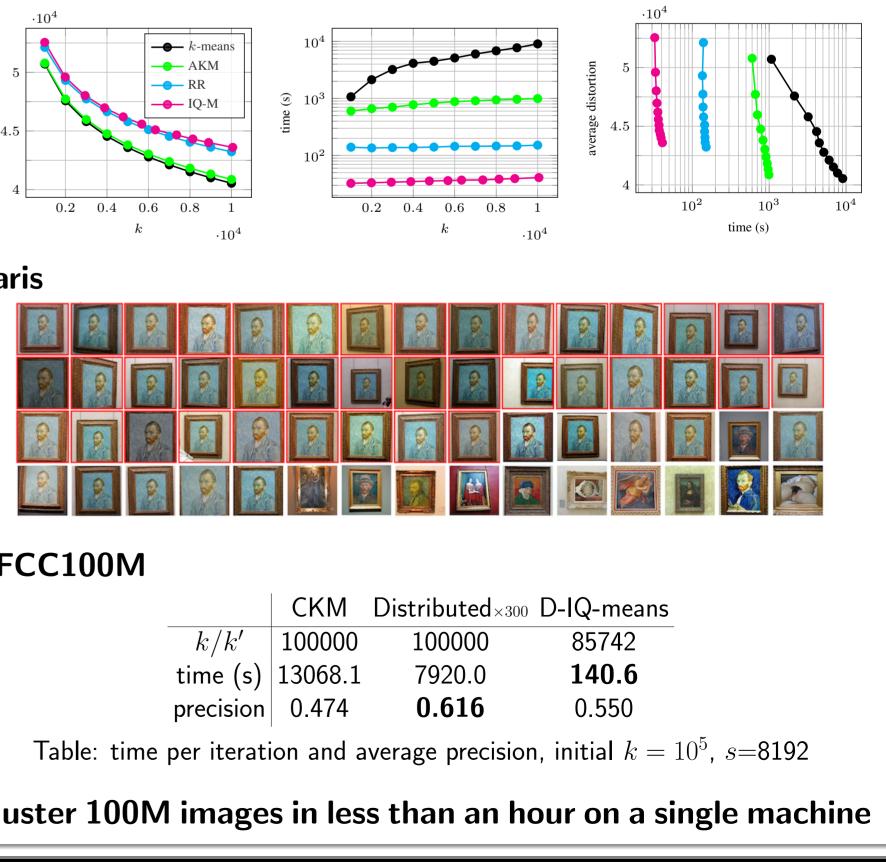
Experiments

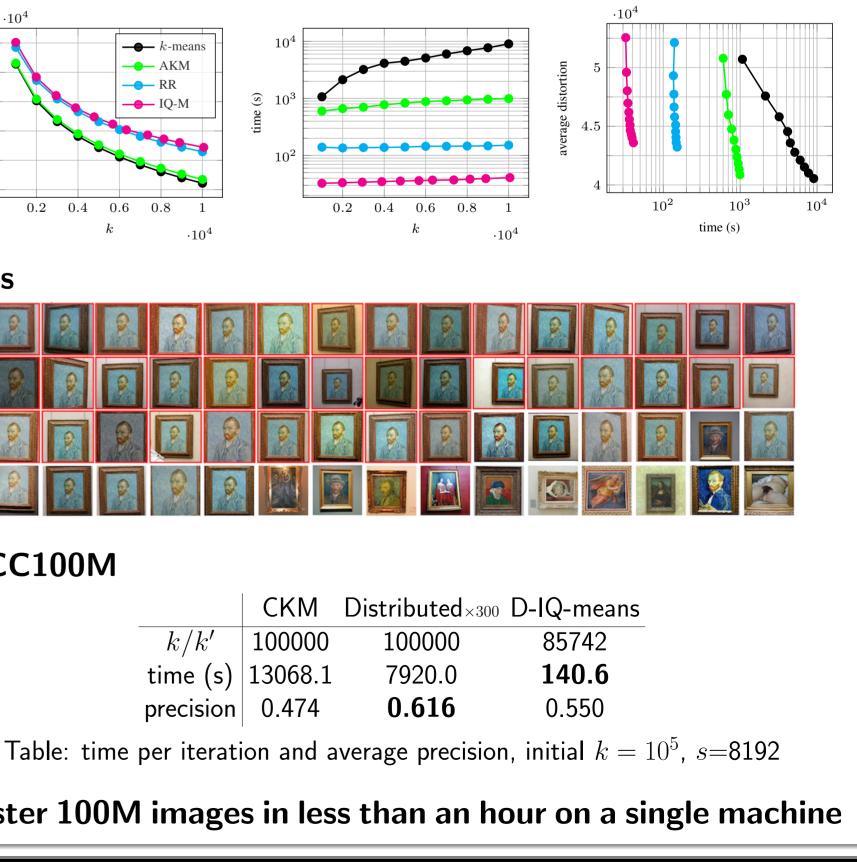
- image classification labels

SIFT1M



Paris





► centroids can still be quantized on the grid, just like data points ▶ quantize each centroid c_m to cell u_α , record its index m in cen[α] ▶ at no extra cost you can have a list of neighboring centroid indices and distances

► following EGM [Avrithis & Kalantidis, ECCV, 2012], we model the distribution of points assigned to cluster c_m by an isotropic normal density $\mathcal{N}(x|c_m, \sigma_m)$, where

$$\sigma_m^2 \leftarrow \frac{1}{P_m} \sum_{\alpha \in A_m} p_\alpha \| \mu_\alpha - c_m \|^2.$$

 \blacktriangleright iterate over all clusters m in descending order of population P_m ► for every centroid, get list of neighboring centroids and compute overlap ► purge clusters that overlap too much with all clusters kept so far

► Datasets: SIFT1M, Paris, Yahoo Flickr Creative Commons 100M (YFCC100M) ► Image representation: AlexNet CNN fc7 features, PCA to 128 dimensions, optimized subspace decomposition [Ge et al., 2013]

► **Metrics:** distortion, timings and cluster precision (or *purity*) on a noisy set of