

Motivation

- Global CNN descriptors perform well for instance retrieval
- Regional descriptors work better, especially for small object Higher complexity and memory requirements
- Solution: Discover repeating objects, suppress clutter Better global descriptors
- Our method is fully unsupervised

Overview

- Detect salient regions on FS and extract regional descripto
- Construct regional kNN graph over the database
- Regions with many similar neighbors likely contain repeatir
- Detect regions on OS and aggregate them into a global detect

Feature Saliency (FS)

- Create a 2D saliency map of an image from its CNN activation
- Saliency is the normalized sum of the weighted channels
- ► Weight per channel obtained following CRoW [3]

Region detection: Expanding Gaussian mixture (EGM

- Detecting a small number of regions from each saliency ma EGM [1] based on the expectation-maximization optimizat
- Dynamically estimates the number of components
- A component is defined as rectangular region in the 2D pla

Unsupervised object discovery for instand Oriane Siméoni ¹ , Ahmet Iscen ² , Giorgos Tolias ² , Yannis Avrithis ¹ , Ondřej Chum ¹ Inria Rennes, ² Visual Recognition Group, FEE, CTU ir						
	Database graph construction					
retrieval nall objects clutter	• Construct similarity graph between all detected regions $ sim(\mathbf{u}, \mathbf{v}) = \begin{cases} (\mathbf{u}^{T} \mathbf{v})^{\gamma} & \text{if } \mathbf{u}, \mathbf{v} \text{ are mutual } k\text{-ne}\\ 0 & \text{otherwise} \end{cases} $ • Adjacency matrix W : sparse, symmetric non-negative pairwise similarities $w_{ij} = sim(\mathbf{u}_i, \mathbf{u}_j)$ and zero diagon • Symmetrically normalized adjacency matrix: $\mathcal{W} := D^{-1/2} W D^{-1/2}$					
	where D is the row-wise sum of W • Regularized graph Laplacian, given $\alpha \in (0, 1)$ $\mathcal{L}_{\alpha} := (I - \alpha \mathcal{W})/(1 - \alpha)$					
	Graph centrality [4] • Centrality g represents the significance of each vertex • It is the solution of the linear system: $\mathcal{L}_{\alpha}\mathbf{g} = 1$					
Regional kNN graph over the database	The solution is obtained by conjugate gradients as in [
descriptors	Object Saliency (OS)					
n repeating objects global descriptor	 Object saliency map: reflects relevance to frequent dat Sliding window over the activation map of each image Consider a square patch at each position p and compute 					
INN activations hannels	FS at position p neighbor region descriptor neighondes $S_p = \hat{F}_p^{\theta} \sum_{i \in N_p} s(\mathbf{v}_i \mathbf{x}_p) f_i^{\theta} g_i^*$ indices of k -nearest neighbors neighbor centrality					
re (EGM)	► EGM detection from OS maps					
	 Experimental setup: Baselines Uniform: regions selected on a uniform grid at 3 scales Uniform[†]: same but weighted pooling over activations 					
aliency map optimization process s the 2D plane						

L1 sampling

L2 sampling

stance recognition

ej Chum² CTU in Prague

Results

s from FS maps, with					
earest neigbors	Method	QE	Instre	Oxford	(
	MAC	-	48.5	79.7	
e matrix containing	Uniform [5]	-	47.7	77.7	
	FS.EGM *	-	48.4	77.5	
	OS.EGM *	-	50.1	79.6	
	$OS.EGM-\Delta^{^{}}$	-	53.7	79.8	
	MAC	V	/1.8 70.2	87.4 05.7	
	ES ECM *	V	70.5	00.7 80.8	
	OS EGM *	V	727	90 4	
	$OS_EGM- \wedge^*$	\checkmark	75.4	90.1	
		•		5011	
	Examples				
(region) in the graph	Imago				
	image.			A Martin Land and a second	
					1. 2° 0
[2]			10	X	112
L J					Dar
				1113	27
	FS:				
				No and a	ST.
tabase objects					
					200
ute saliency S_p :					
hbor FS					
	US:				
				- A	01
			11 m		
				a the	
score	More OS ex	am	ples:		
			A THE		
		SAV	BAR		
S. $C \rightarrow A C = C$					
s as in CroW [3].	References:				
	[1] Y. Avrithis and Y.	Kalar	itidis. App	proximate g	jau
×	$\begin{bmatrix} 2012. \\ \hline 2 \end{bmatrix} \Delta \text{ Iscon } C \text{ Tables}$. 🗸 ۸	vrithic T	Furon an	4
×	compact cnn repre	esentat	ions. In C	<i>CVPR</i> , 2017	u ' 7
.	[3] Y. Kalantidis, C.		, and S. (Osindero. C	ro
	[4] L. Katz A new st	∠.0400 atus in	o, 2015. dex deriva	ed from sou	cio
pling	[5] G. Tolias, R. Sicre	, and	H. Jégou.	Particular	ob
			0		5

ted regions from FS maps. with utual k-ne

n-negative ero diagona

equent dat

ach image.

and compu

criptor neigh

 $f_i \ g_i$

hbor centrality

at 3 scales ctivations

Dxford105k
73.9
70.1
70.2
71.8
71.4
86.0
82.7
87.9
88.0
84.3

mAP comparison of OS.EGM (\star) to R-Match with uniformly sampled regional descriptors (Oxford5k). Text labels refer to query time.

e gaussian mixtures for large scale vocabularies. In ECCV, pages 15-28. Springer, and O. Chum. Efficient diffusion on region manifolds: Recovering small objects with Cross-dimensional weighting for aggregated deep convolutional features. arXiv

sociometric analysis. *Psychometrika*, 18(1):39–43, 1953. lar object retrieval with integral max-pooling of cnn activations. In ICLR, 2016.