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Manifold Search

I Euclidean distance is only locally a good metric

I Related images form non-linear manifolds

I Manifold search retrieves them but is expensive [2]

I We dramatically reduce the online (query time) cost
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I Database represented by adjacency matrix W ∈ Rn×n, symmetrically normalized as
W : = D−1/2WD−1/2, where D : = diag(W1)

I Regularized Laplacian given by Lα : = (I − αW)/(1− α), where α ∈ [0, 1)

I Query: n× 1 observation vector y, determined by k-NN of query descriptor

I Search [2]: n× 1 similarity vector x by conjugate gradient method

Lαx = y

Accelerating manifold search

I Reduce manifold search to dot product search:

x = L−1
α y

I Challenge: Lα is sparse, but its inverse is not!

I Use a low-rank approximation of L−1
α to compute x without ever computing L−1

α

I Formulate as x = hα(W)y, where transfer function

hα(W) : = (1− α)(I − αW)−1

Fast Spectral Rankingsearching on manifolds as smoothing
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• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain

generalize hα to an arbitrary transfer function h
searching on manifolds as smoothing
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• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain

eigenvalue decomposition of Wsearching on manifolds as smoothing
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• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain

low-rank approximation
searching on manifolds as smoothing
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diagonal sparse

• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain

dot-product search (under conditions on h and Λ)

Smoothing in the frequency domain
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(a) Input signal y
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(b) Output signal x

Low-pass filtering (moving average) of an impulse over the integers
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(c) Input signal y
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(d) Output signal x

Low-pass filtering over a weighted undirected graph: impulse is query
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hα is a ‘low-pass filter’; 1− x represents eigenvalues of Lα

Low-dimensional manifold representation

x = L−1
α y

≈ Uhα(Λ)U>y

= Φ>Φy

I Dataset representations Φ : = hα(Λ)1/2U> ∈ Rn×r

I Query Φy is a linear combination of dataset representations

I Manifold search is reduced to dot product search

Image retrieval

I Regional diffusion on Oxford (5k), Paris (6k) and Instre (27k)

I Each image is represented by 21 regions/vectors on average.

I Each region represented by 2048-D ResNet descriptor [1]

I Graph size: Oxford (≈100k), Paris (≈100k), Instre (≈500k)

Same performance as [2], two orders of magnitude faster

False negatives?

(La Défense, AP: 92.1) #5 #32 #51 #70 #71 #76 #79 #126

(Pyramide du Louvre, AP: 92.7) #2 #4 #8 #61 #68 #72 #75 #108

Top-ranked negative images (incorrectly labeled and correctly labeled)
Fixed annotations: See Paper # 2730
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