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Goal: unsupervised mining of training samples
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Mining on Manifolds (MoM): Approach

1. Input: unordered collection of n images

2. Construct affinity matrix A = (aij) ∈ Rn×n

3. Compute stationary prob. distribution π of random walk on A.

4. Anchor selection: local maxima of π on A.

5. For each anchor y

I Top-k manifold (M(y)) and Euclidean (E(y)) neighbors.
I Choose positive images:

S+(y) = {x ∈ X : x ∈M(y) \ E(y)}
I Choose negative images:

S−(y) = {x ∈ X : x ∈ E(y) \M(y)}.

see poster 2778 for manifold search, a.k.a diffusion

Anchor images

Randomly sampled anchors from the top 100 anchors according to node importance

Randomly sampled anchors from the top 1000 anchors according to node importance

Positive and negative images

y S+ E(y) [1] S− X \ E(y) [1]

Applications

Particular object retrieval

I Training set: 1M unlabeled Flickr images

I Extract R-MAC descriptors with pre-trained network

I Mine 1k anchors

I Mine positive and negative pools per anchor (50 images per pool)

I Train MAC image descriptors as in Radenović et al. [6]

I Test sets: Oxford, Paris, Holidays, and Instre datasets

Fine-grained categorization

I Training set: images for 100 CUB200-2011 classes, as in [4] but unlabeled

I Extract R-MAC descriptors with pre-trained network

I Set each training image as anchor

I Mine positive and negative pools per anchor (50 images per pool)

I Train 64D image descriptors with triplet loss

I Test set: remaining 100 CUB200-2011 classes, standard benchmark [4]

Experiments
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Particular object retrieval

ImageNet SfM [6] MoM

See paper 2730 [5] for R-Oxford and R-Paris benchmarks.
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Fine-grained recognition ImageNet
Cyclic Match [3]

MoM
Triplets (semi-hard) [7]

Lifted Structure [4]
Smart Mining [2]
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