

Motivation

- Problem: spatial verification in large-scale image retrieval
- ► Global descriptors lose the spatial information in activation maps [1, 6]
- Local descriptors are expensive to store [4]
- Solution: detect features directly on activation maps, match them independently per channel
- No network modification or retraining
- No local feature detection directly on the input image, no local descriptors, no codebooks

Activation maps

- Activation maps are sparse
- Responses on each channel are corresponding between different views

Local features

Detect local features using MSER [3]

Represent image by a set of features, each specified by

- a scalar strength, pooled over the MSER region (1d)
- mean and covariance matrix of ellipse fitted to the region (5d)
- ▶ id of the channel in which the feature was detected (1d)

Spatial matching

- Tentative correspondences only among features in the same channel
- Match tentative correspondences using RANSAC
- Channel ids play the role of visual words

Local Features and Visual Words Emerge in Activations Oriane Siméoni¹, Yannis Avrithis¹, Ondřej Chum²

¹Inria, Univ Rennes, CNRS, IRISA ²VRG, FEE, Czech Technical University in Prague

Deep Spatial Matching (DSM)

- Get activation maps from the last convolutionnal layer of a CNN
- Approximate tensors by a collection of local features
- Robustly match those features to approximate optimal alignment of tensors

Examples

Implementation details

Results: Revisited Oxford and Paris [5]

	Medium								
Method	\mathcal{R}	Oxf	$\mathcal{R}Par$						
	mAP	mP@10	mAP	mP@10					
V	44.8	63.3	65.7	95.0					
V+DSM	51.1	77.3	66.2	96.9					
R↑	44.4	64.2	69.0	96.4					
$R\uparrow +DSM$	49.6	74.0	69.7	98.4					
V+D	48.4	65.2	81.4	95.6					
V+DSM+D	61.6	81.0	82.8	97.6					
R↑+D	53.8	69.0	85.6	96.3					
$R\uparrow +DSM+D$	60.2	78.9	86.3	96.9					
Off-the shelf VGG (V) and ResNet (R). \uparrow : upsame									
pling; D: diffusion [2]. All results with GeM pooling and supervised whitening.									

	Medium								
Method	$\mathcal{R}Oxf$		$\mathcal{R}Oxf+\mathcal{R}1M$		$\mathcal{R}Par$		$\mathcal{R}Par{+}\mathcal{R}1M$		
	mAP	mP@10	mAP	mP@10	mAP	mP@10	mAP	mP@10	
"DELF-HQE+SP" [5]	73.4	88.2	60.6	79.7	84.0	98.3	65.2	96.1	
"DELF-ASMK*+SP" \rightarrow D† [5]	75.0	87.9	68.7	83.6	90.5	98.0	86.6	98.1	
V-MAC*+D	67.7	86.1	56.8	78.6	85.6	97.6	78.6	96.4	
V-MAC*+DSM+D	72.0	90.6	59.2	80.1	86.4	98.9	79.3	97.1	
R-MAC*↑+D	73.9	87.9	61.3	80.6	89.9	96.1	83.0	95.1	
$R-MAC*\uparrow+DSM+D$	76.9	90.7	65.7	83.9	90.1	96.4	84.0	95.3	
V-GeM[6]+D	69.6	84.7	60.4	79.4	85.6	97.1	80.7	97.1	
V-GeM[6]+DSM+D	72.8	89.0	63.2	83.7	85.7	96.1	80.1	95.7	
R-GeM[6]+D	69.8	84.0	61.5	77.1	88.9	96.9	84.9	95.9	
$R-GeM[6]\uparrow+D$	70.1	84.3	67.5	79.0	89.1	97.3	85.0	96.6	
R-GeM[6] + DSM+D	75.0	89.6	70.2	84.5	89.3	97.1	84.8	95.3	
tate-of-the-art VGG (V) and ResNet (R). \uparrow : upsampling; *: our re-training; D: diffusion [2]. Results citing [!									

as reported in that work, combining DELF [4], ASMK* and HQE. SP: spatial matching; D†: diffusion on graph obtained by [1].

References

- [1] A. Gordo, J. Almazan, J. Revaud, and D. Larlus. End-to-end learning of deep visual representations for image retrieval. *IJCV*, 124(2):237–254, Sep 2017.
- [2] A. Iscen, G. Tolias, Y. Avrithis, T. Furon, and O. Chum. Efficient diffusion on region manifolds: Recovering small objects with compact cnn representations. In CVPR, 2017.
- [3] J. Matas, O. Chum, U. Martin, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. In *BMVC*, 2002.
- features. In ICCV, 2017.
- [5] F. Radenović, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Revisiting Oxford and Paris: Large-scale image retrieval benchmarking. In CVPR, 2018.
- [6] F. Radenović, G. Tolias, and O. Chum. Fine-tuning CNN image retrieval with no human annotation. *IEEE* Trans. PAMI, 2018.

Diffusion [2] on DSM verified images

Diffusion based on the nearest neighbor graph of global descriptors Ranks images according to manifold similarity DSM verified images are a good starting point for diffusion

Images processed at multiple scales: 1, $1/\sqrt{2}$, 1/2Non-maxima supression by feature strength across channels Initial ranking using global descritors, top 100 images re-ranked by DSM

Distribution of number of **inliers** for positive and negative database images over all queries of $\mathcal{R}Oxf$, using VGG-MAC.

[4] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. Large-scale image retrieval with attentive deep local