

Dense Classification and Implanting for Few-Shot Learning

Yann Lifchitz 1,2 , Yannis Avrithis 1 , Sylvaine Picard 2 , Andrei Bursuc 3

¹Univ Rennes, Inria, CNRS, IRISA ²Safran ³valeo.ai

Few-shot learning

SAFRAN

- Recognize previously unseen classes with very few annotated examples
- ► Take advantage of a large dataset of images from a variety of base classes to learn a class independent embedding
- Use the few-shot data to adapt to novel classes disjoint from the base classes

Contributions

- ▶ Dense classification: Use local activations to better learn an embedding function
- Implanting: Attach new neurons to a previously trained network to learn new, task-specific features
- ► Improve the prior state-of-the-art on few-shot classification of *mini*lmageNet and FC100

First learning stage (base classes)

- ► Goal: Learn a task-agnostic embedding function
- ightharpoonup Data: Large dataset in base class set C
- Embedding function $\phi_{\theta}(\mathbf{x}) \in \mathbb{R}^d$: CNN+pooling
- Classifier $f_{\theta,W}(\mathbf{x}) := ([s_{\tau}(\phi_{\theta}(\mathbf{x}), \mathbf{w}_j)]_{j=1}^c)$, where $\mathbf{w}_j \in \mathbb{R}^d$ the weights of class j
- Similarity function s_{τ} : scaled cosine similarity [2, 4] $s_{\tau}(\mathbf{x}, \mathbf{y}) := \tau \langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle$
- Loss: softmax + cross-entropy, with au as a free parameter

Second learning stage (novel classes)

- ullet Goal: Classify queries of novel classes C^\prime disjoint from C
- ▶ Data: k labeled images per novel class: k-shot c'-way classification
- ▶ Novel class weights: prototypes [5] from labeled examples

Dense classification (DC)

- lacksquare Embedding tensor in $\mathbb{R}^{r imes d}$ is usually flattened or pooled
- lacktriangle Here, seen as collection of vectors $[\phi^{(k)}(\mathbf{x})]_{k=1}^r$, where $\phi^{(k)}(\mathbf{x})$ represents spatial location k
- ▶ Average pooling of losses at training, average pooling of predictions at testing

Dense classification study

Stage 1 training	Support/query pooling at testing					
	$Support \to$	GMP		GAP		
	$Queries \to$	GMP	DC	GAP	DC	
Global average pooling	Base classes	63.55 ± 0.20	77.17 ± 0.11	79.37 ± 0.09	77.15 ± 0.11	
	Novel classes	72.25 ± 0.13	70.71 ± 0.14	76.40 ± 0.13	73.28 ± 0.14	
	Both classes	37.74 ± 0.07	38.65 ± 0.05	56.25 ± 0.10	54.80 ± 0.09	
Dense classification	Base classes	79.28 ± 0.10	80.67 \pm 0.10	80.61 \pm 0.10	80.70 ±0.10	
	Novel classes	79.01 \pm 0.13	77.93 ± 0.13	78.55 ± 0.13	$\textbf{78.95}\ \pm\textbf{0.13}$	
	Both classes	42.45 ± 0.07	57.98 ± 0.10	67.53 ± 0.10	67.78 ± 0.10	
Average 5-way 5-shot accuracy on base, novel and both classes of minilmageNet with ResNet-12						
GMP: global max-pooling; GAP: global average pooling.						

- ▶ Best: DC at training, global average pooling (GAP) on support, DC on queries
- ▶ DC allows integrating novel classes without forgetting the base ones

Implanting

- Goal: Learn new features specific to the few-shot task using only few-shot data
- ▶ Implants: Additional convolution kernels trained on few-shot examples
- Base network frozen during this stage
- Implant features and base network features concatenated

Effect of dense classification

- Improves spatial distribution of class activation
- Encourages correct classification at all spatial locations
- Implicit data augmentation

Images overlaid with correct class activation maps [6] with models learned with global average pooling (GAP) or dense classification (DC)

Results

Method	1-shot	5-shot	10-shot
GAP	58.61 ± 0.17	76.40 ± 0.13	80.76 ± 0.11
DC (ours)	$\textbf{62.53}\pm\textbf{0.19}$	78.95 ± 0.13	82.66 ± 0.11
DC + WIDE	61.73 ± 0.19	78.25 ± 0.14	82.03 ± 0.12
DC + IMP (ours)	-	$\textbf{79.77}\pm\textbf{0.19}$	$\textbf{83.83} \pm \textbf{0.16}$
MAML [1]	48.70 ± 1.8	63.10 ± 0.9	_
PN [5]	49.42 ± 0.78	68.20 ± 0.66	_
LWF [2]	55.45 ± 0.7	73.00 ± 0.6	_
PN [3]	56.50 ± 0.4	74.20 ± 0.2	78.60 ± 0.4
TADAM [3]	58.50	76.70	80.80

Average 5-way novel-class accuracy on minilmageNet with ResNet-12. GAP: global average pooling; WIDE: last residual block widened by 16 channels; IMP: last residual block implanted by 16 channels.

References

- [1] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *ICML*, 2017.
- [2] S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In CVPR, 2018.
- [3] B. N. Oreshkin, A. Lacoste, and P. Rodriguez. Tadam: Task dependent adaptive metric for improved few-shot learning. *NIPS*, 2018.
- [4] H. Qi, M. Brown, and D. G. Lowe. Low-shot learning with imprinted weights. In CVPR, 2018.
- [5] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.
- [6] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. In *CVPR*, 2016.