

Local Propagation for Few-Shot Learning

Yann Lifchitz^{1,2}, Yannis Avrithis¹, Sylvaine Picard²

¹Univ Rennes, Inria, CNRS, IRISA ²Safran

Transductive Few-shot learning

- Classify queries into previously unseen classes with very few annotated examples
- Transduction: queries are seen in batch
- ► Transductive methods leverage their distribution for better classification

Contributions

- Study of graph-based propagation of on local representations across images
- Application to few-shot learning, bridging the gap between transductive and non-transductive inference
- Introduction of a simple but powerful spatial attention mechanism

Process

- ▶ Base class training using dense classification [2]
- ► Spatial attention and extraction of local features of supports and queries
- Building a graph with supports and queries local features
- Optionally propagating features on the graph
- Classification of queries with label propagation

Local Features

- ▶ Pixels of feature maps are treated as local features
- ▶ Spatial attention: removes local features corresponding to irrelevant part of the image
- ▶ $a(F) := \{F(r) : \|F(r)\| \ge \tau \max_{t \in \Omega} \|F(t)\|, r \in \Omega\}$, F(r) being the feature vector corresponding to spatial position r in the position set Ω .
- ▶ Feature pooling: Clustering of the remaining features using k-means clustering
- Final local features are the resulting cluster centroids

Examples of CUB images, each with the corresponding spatial attention heatmap and clusters used in feature pooling.

Local Propagation

- Vertices: Local features
- ► Edges values: Cosine similarity
- ► Propagation as in [7]
- ▶ Propagated labels treated as predicted class probability
- Predictions average for each query

Examples of CUB query images in 5-way 5-shot non-transductive tasks, each followed by the heatmap of predicted probability for the correct class using a prototype classifier, then using local label propagation.

Results

Метнор	CUB		miniImageNet	
	1-shot	5-shot	1-shot	5-ѕнот
Non-Transductive infer	ENCE			
Proto [5]	74.85±0.48	90.38±0.27	63.39±0.46	81.21±0.32
Proto [5]+Att	77.10 ± 0.47	91.24 ± 0.26	64.22 ± 0.45	81.71 ± 0.31
Global label propagation	77.23 ± 0.46	88.78 ± 0.31	63.41 ± 0.45	77.04 ± 0.37
Local label propagation	79.32 ± 0.44	$91.52 \!\pm\! 0.25$	64.43 ± 0.45	80.26 ± 0.32
Transductive inference				
TPN [3]	-	-	59.46	75.65
LR+ICI [6]	88.06	92.53	66.80	79.26
EPNet [4]	82.85 ± 0.81	91.32 ± 0.41	66.50 ± 0.89	81.06±0.60
Global label propagation	87.18 ± 0.46	91.88 ± 0.27	72.54 ± 0.54	81.38±0.35
Local label propagation	87.77 ± 0.41	$93.35 \!\pm\! 0.23$	$72.57 \!\pm\! 0.51$	82.76 ± 0.33

5-way few-shot classification accuracy. All propagation methods use spatial attention, feature propagation and feature pooling if possible.

Universal solution

CUB 5-way 5-shot classification accuracy vs. number of queries per novel class.

References

- [1] W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, and J. Luo. Revisiting local descriptor based image-to-class measure for few-shot learning. In CVPR, 2019.
- [2] Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc. Dense classification and implanting for few-shot learning. CVPR, 2019.
- [3] Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, and Y. Yang. Learning to propagate labels: Transductive propagation network for few-shot learning. In ICLR, 2019.
- [4] P. Rodríguez, I. Laradji, A. Drouin, and A. Lacoste. Embedding propagation: Smoother manifold for few-shot classification. arXiv preprint arXiv:2003.04151, 2020.
- [5] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.
- [6] Y. Wang, C. Xu, C. Liu, L. Zhang, and Y. Fu. Instance credibility inference for few-shot learning. arXiv preprint arXiv:2003.11853, 2020.
- [7] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In NIPS, 2003.