

Motivation

- Problem: Few-shot learning by using unlabelled data
- Limited labeled data make the problem fundamentally hard
- Available unlabeled data that can be used to improve accuracy performance
- **Solution:** Incorporate multiple ideas to design a novel algorithm
- Exploit the manifold structure of the data to classify the unlabelled data
- Select the most likely correctly classified predictions to augment labelled dataset and iteratively classify all available unlabeled data

Problem definition

Pre-training:

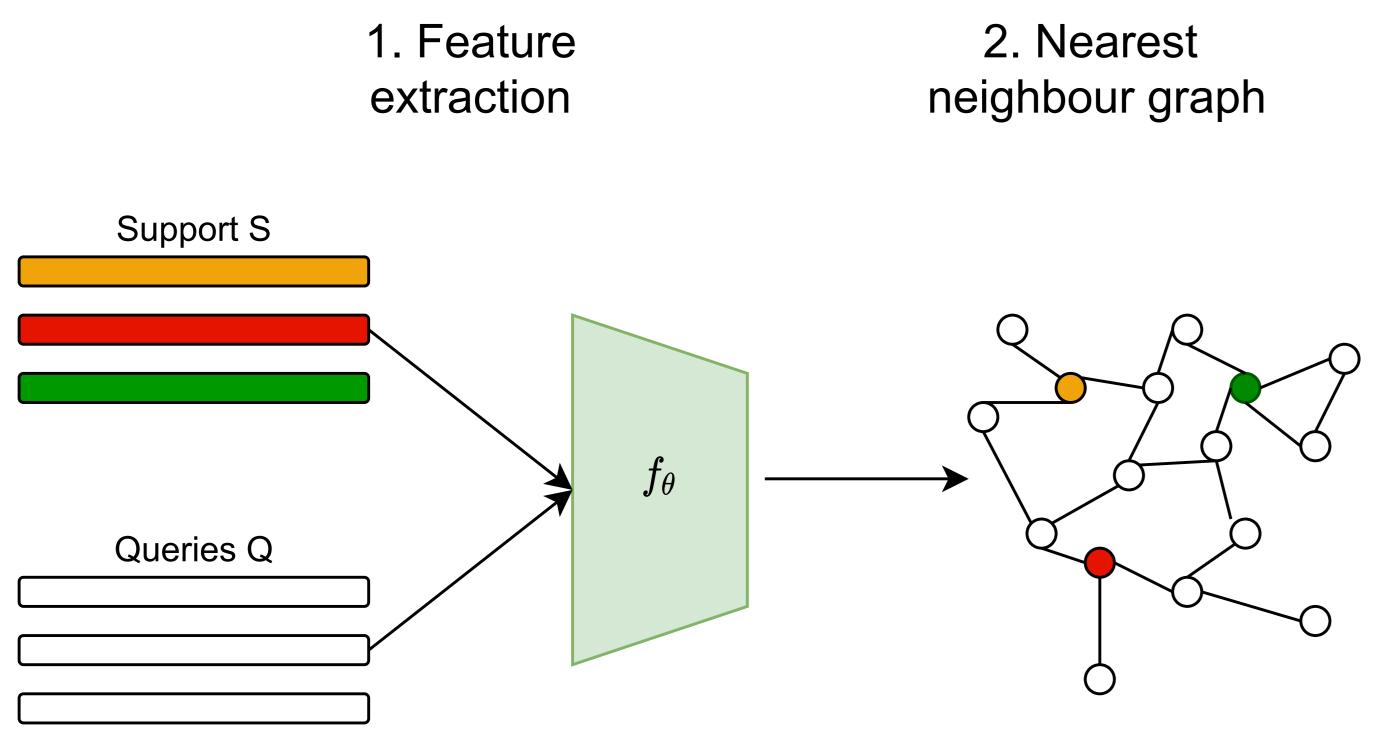
- We use publicly available pre-trained networks from published works
- ► Base class dataset: $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^{I}$ where $y_i \in C_{\text{base}}$
- \blacktriangleright Embedding network $f_{\theta}: \mathcal{X} \to \mathbb{R}^d$ is trained on D_{base}

Inference stage

- We focus on transductive and semi-supervised few-shot learning
- \blacktriangleright Novel class dataset D_{novel} with C_{novel} disjoint from C_{base}
- \blacktriangleright Assume access to f_{θ} , a support set, S, a query set, Q and in the semi-supervised setting also an unlabelled set, U

Nearest neighbour graph

- \blacktriangleright Embed all examples from S and Q into feature vectors and ℓ_1 -normalize them, where T is the total amount of examples both labelled and unlabelled
- \blacktriangleright Construct a k-nearest neighbour graph using all the features from S and Q



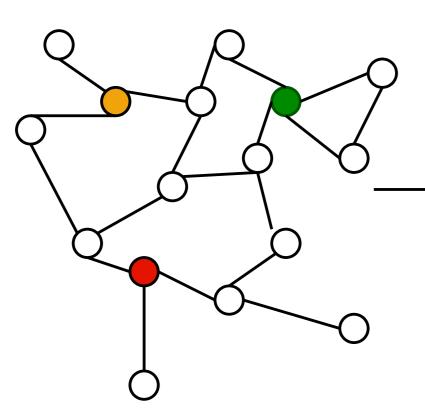
Label propagation

- Define the label matrix Y
- Label propagation to obtain a class probability distribution for every query

$$Z := (I - \alpha \mathcal{W})^{-1} Y,$$

 (\bot)

where $\alpha \in [0, 1)$ is a hyperparameter, N is the number of classes and $\mathcal W$ is the adjacency matrix obtained from the construction of the nearest neighbour graph

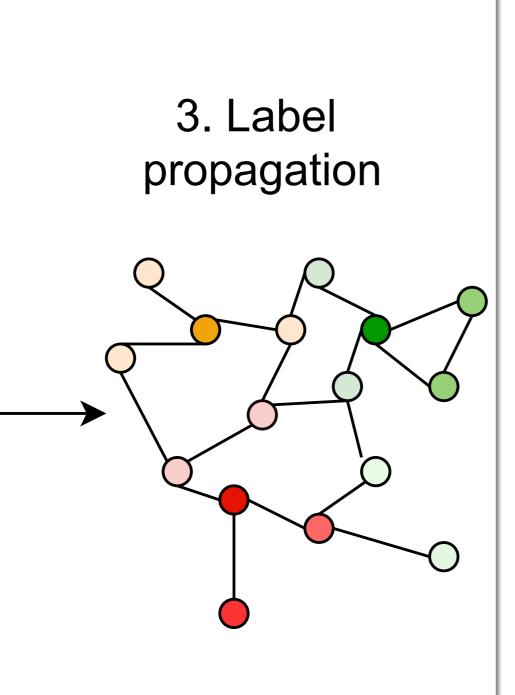


2. Nearest

neighbour graph

Iterative label cleaning for transductive and semi-supervised few-shot learning Michalis Lazarou¹, Tania Stathaki¹, Yannnis Avrithis²

¹Imperial College London ²Inria, Univ Rennes, CNRS, IRISA

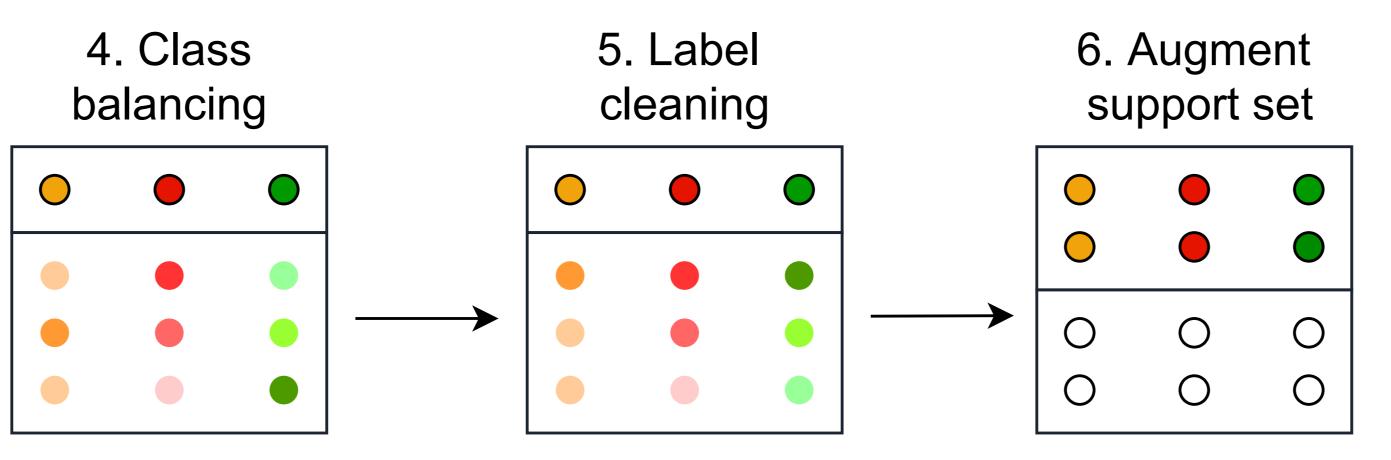


Class balancing

- Use the output matrix from the label propagation part
- We incorporate prior information in the class balancing regime by setting a row-wise sum p and a column-wise sum q as restrictions
- ► We search for a *transport plan* through the use of Sinkhorn-Knopp algorithm [2], i.e., iteratively normalizing rows and columns to the respective q and quntil convergence

Label cleaning

- In order to identify the most likely correctly classified labels, we interpret the problem as *learning with noisy labels*
- > We train an N-way linear classifier with large learning rate on both labeled and pseudo-labeled data
- For every class, we select the 3 pseudo-labels with the lowest loss value and treat them as labeled examples
- Iterate the procedure until all queries are classified



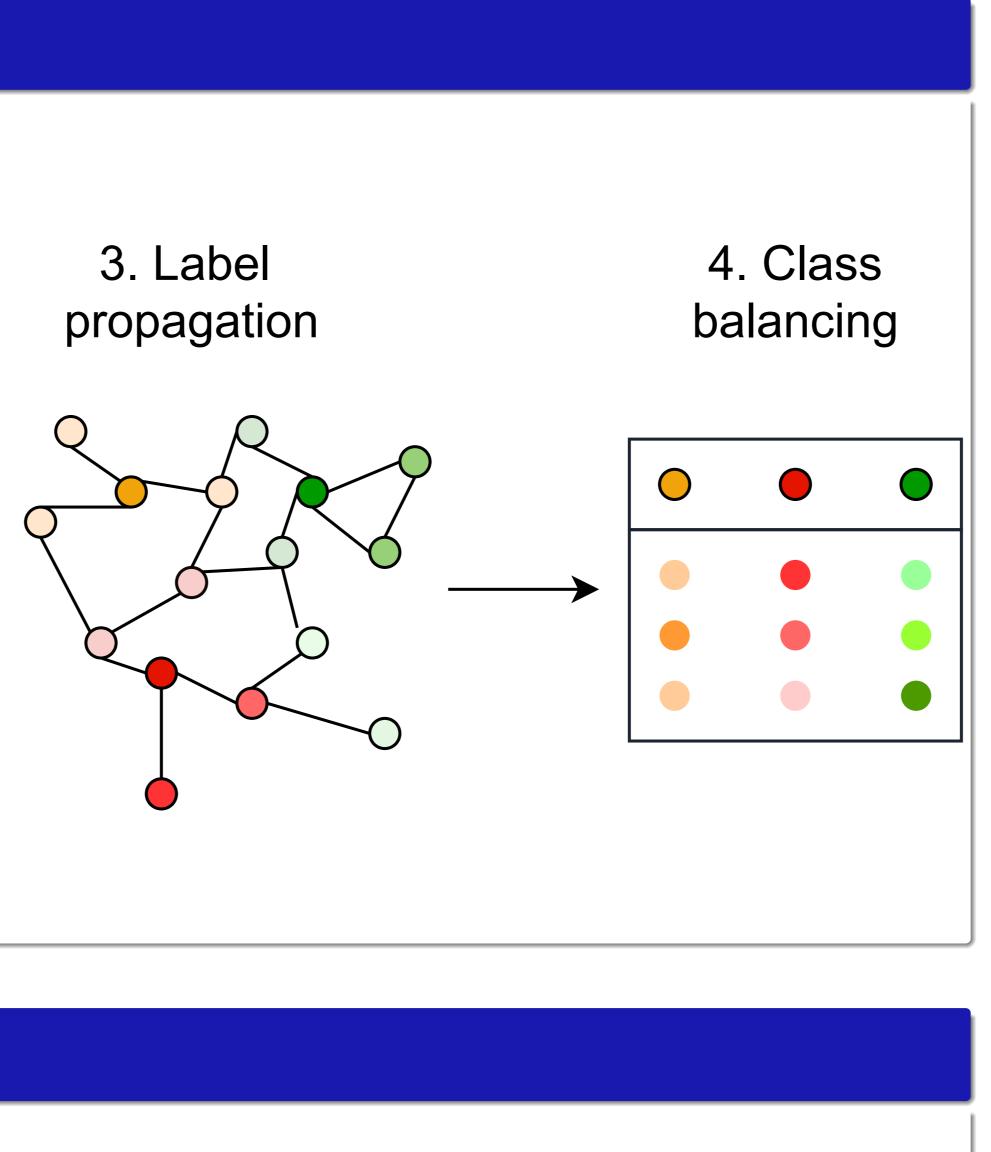
Implementation details

We use PyTorch, FAISS and scikit-learn

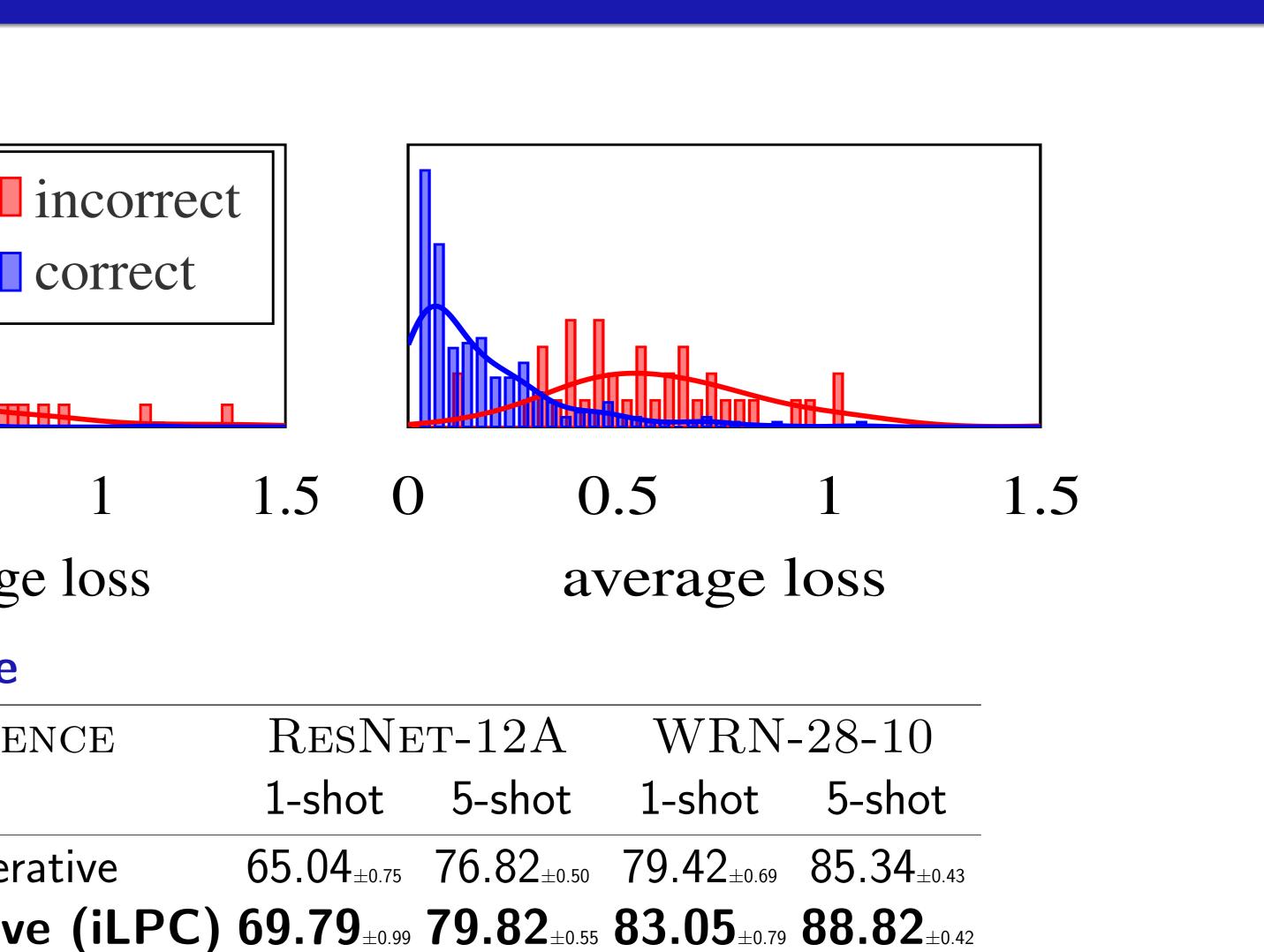
Ablation study

Label propagation

	INFERENCE]	ResNe	т-12А	WRN-28-10	
]	l-shot	5-shot	1-shot	5-shot
	Inducti	ve classifier	5	$6.30 \scriptstyle \pm 0.62$	$75.59_{\pm 0.47}$	$68.17 \scriptscriptstyle \pm 0.60$	$\textbf{84.33}_{\pm 0.43}$
	Label	Propagatio	n 61	$1.09 \scriptstyle \pm 0.70$	$75.32 \scriptscriptstyle \pm 0.50$	$\textbf{74.24}_{\pm 0.68}$	$84.09 \scriptscriptstyle \pm 0.42$
ass b	alancing						
	BALANC	ING NETWO)RK	<i>mini</i> IN	/AGENE	Γ <i>tiered</i> I	MAGENE
				1-shot	5-sho	t 1-shot	t 5-shot
	None	WRN-28	8-10	$78.06_{\pm0}$.82 87.80±0	0.42 86.04±0	0.73 90.74 ±0.4
	True		10	07 60	00 07	00 17	



Ablation study							
Label cleaning							
# examples							
0 0.5 1 1.5 0 0.5 1 1.5							
average loss average loss							
Iterative procedure							
INFERENCE RESNET-12A WRN-28-10 1-shot 5-shot 1-shot 5-shot Non-iterative $65.04_{\pm 0.75}$ $76.82_{\pm 0.50}$ $79.42_{\pm 0.69}$ $85.34_{\pm 0.43}$ iterative (iLPC) $69.79_{\pm 0.99}$ $79.82_{\pm 0.55}$ $83.05_{\pm 0.79}$ $88.82_{\pm 0.42}$							
State of the art comparisons							
Transductive few-shot learning:MethodNetwork miniImageNet tieredImageNetCIFAR-FS							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$							
<i>Transductive inference</i> , comparison with LR+ICI [3] and PT+MAP [1]. *: our reproduction with official code on our datasets.							
Method Network <i>mini</i> ImageNet <i>tiered</i> ImageNet Cifar-FS 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 5-shot							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
<i>Transductive inference, 50 queries per class.</i> *: our reproduction withofficial code on our datasets.							
Semi-supervised few-shot learning:							
METHOD NETWORK SPLIT <i>mini</i> IMAGENET <i>tiered</i> IMAGENET CIFAR-FS 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 5-shot							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
<i>Semi-supervised few-shot learning</i> , comparison with [3, 1]. *: our reproduction with official code on our datasets. †: our adaptation to semi-supervised, based on official code.							
 Y. Hu, V. Gripon, and S. Pateux. Leveraging the feature distribution in transfer-based few-shot learning. arXiv preprint arXiv:2006.03806, 2020. 							
[2] P. A. Knight. The Sinkhorn-Knopp algorithm: convergence and applications. SIAM Journal on Matrix Analysis and Applications, 2008.							



[3] Y. Wang, C. Xu, C. Liu, L. Zhang, and Y. Fu. Instance credibility inference for few-shot learning. CVPR, 2020.