

Motivation

Problem: Few-shot learning

- Limited labeled data make the problem fundamentally hard
- Difficult to train classifiers with very small amount of labeled data
- **Solution:** Few-shot synthetic feature generation
- Exploit the spatial properties of tensor features to train a feature hallucinator
- Introduce a novel loss function that is simpler than other state of the art few-shot synthetic data generation methods

Problem definition

Pre-training:

- ▶ Base class data: $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^{I}$ where $y_i \in C_{\text{base}}$
- \blacktriangleright Train embedding network $f_{\theta} : \mathcal{X} \to \mathbb{R}^{d \times h \times w}$ on D_{base}
- $f_{\theta}: \mathcal{X} \to \mathbb{R}^d$ denotes f_{θ} followed by global average pooling (GAP)

Inference stage

- \blacktriangleright Novel class data D_{novel} with C_{novel} disjoint from C_{base}
- Sample a support set S and a query set Q from D_{novel}
- \triangleright S consists of N classes with K labeled examples per class
- \blacktriangleright Given S and f_{θ} , classify examples from Q

Representation learning

First stage: train the backbone network using standard cross-entropy:

$$L(D_{\text{base}};\theta,\phi) := \sum_{i=1}^{I} L_{\text{CE}}(c_{\phi}(\bar{f}_{\theta}(x_i)), y_i) + R(\phi)$$

Second stage: adopt a self-distillation process:

 $L_{\mathrm{KD}}(D_{\mathrm{base}};\theta',\phi') := \alpha L(D_{\mathrm{base}};\theta',\phi') + \beta \mathrm{KL}(c_{\phi'}(\bar{f}_{\theta'}(x_i)),c_{\phi}(\bar{f}_{\theta}(x_i)))$

Meta-training hallucinator

- \blacktriangleright Meta-training stage: sample episodes of S from D_{base}
- \blacktriangleright Pre-trained network $f_{\theta'}: \mathcal{X} \to \mathbb{R}^{d \times h \times w}$ maps images to tensors
- Class prototype tensors:

$$p_j := \frac{1}{K} \sum_{i=1}^{K} f_{\theta'}(x_i^j)$$

- \triangleright Conditioner h maps prototypes to class-conditional vectors $s_j := h(p_j) \in \mathbb{R}^{d'}$
- Generator maps to $g(z; s_j) \in \mathbb{R}^{d \times h \times w}$ where $z \sim \mathcal{N}(\mathbf{0}, I_k)$ Jointly trained by:

$$L_{\text{hal}}(X;h,g) = \frac{1}{MN} \sum_{j=1}^{N} \sum_{m=1}^{M} ||g(z_m;h(p_j)) - p_j||^2$$

Tensor feature hallucination for few-shot learning Michalis Lazarou¹, Tania Stathaki¹, Yannnis Avrithis²

¹Imperial College London ²Athena RC

Inference stage: Tensor prototypes

- \blacktriangleright Map all images from S and Q to tensors using the pre-trained $f_{\theta'}$
- Calculate the class tensor prototype of each class using equation 3
- \triangleright Conditioner h maps prototypes to class-conditional vectors $s_j := h(p_j) \in \mathbb{R}^{d'}$

1. Tensor features 2. Tensor prototypes 3. Class conditional

Support set

inference stage: Synthetic tensor features and classification

- Generator maps to $g(z; s_j) \in \mathbb{R}^{d \times h \times w}$ where $z \sim \mathcal{N}(\mathbf{0}, I_k)$
- Use the augmented support set to train a prototypical classifier
- \blacktriangleright Classify each query from query set, Q
- 3. Class conditional 4. Generate tensor 5. Augment Support 6. GAP and prototype features vectors tensors

Implementation details

Our implementations are based on PyTorch and scikit-learn

Ablation study

Method	BACKBONE	<i>mini</i> IMA	GENET	CU	JB	CIFAR-FS		
		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	
Baseline (1)	ResNet-18	$56.81 \scriptstyle \pm 0.81$	$78.31 \scriptscriptstyle \pm 0.59$	$67.14_{\scriptscriptstyle \pm 0.89}$	$86.22 \scriptstyle \pm 0.50$	$65.71 \scriptscriptstyle \pm 0.95$	$84.68 \scriptstyle \pm 0.61$	
Baseline-KD (2)	ResNet-18	$59.62 \scriptstyle \pm 0.85$	$79.31 \scriptscriptstyle \pm 0.62$	$70.85 \scriptstyle \pm 0.90$	$87.64_{\pm0.48}$	$69.15 \scriptscriptstyle \pm 0.94$	$85.89 \scriptstyle \pm 0.59$	
VFH (ours)	ResNet-18	$61.88 \scriptstyle \pm 0.85$	$79.63 \scriptstyle \pm 0.61$	$75.44_{\pm0.85}$	$87.82 \scriptscriptstyle \pm 0.47$	$72.31 \scriptscriptstyle \pm 0.91$	$85.64_{\pm 0.64}$	
TFH (ours)	ResNet-18	$64.49_{\pm0.84}$	$79.94 \scriptscriptstyle \pm 0.60$	$75.66{\scriptstyle \pm 0.85}$	$88.39 \scriptscriptstyle \pm 0.49$	$73.77 \scriptstyle \pm 0.85$	$86.68 \scriptstyle \pm 0.63$	
TFH-ft (ours)	ResNet-18	$65.07 \scriptstyle \pm 0.82$	$80.81 \scriptstyle \pm 0.61$	$75.76 \scriptstyle \pm 0.83$	$88.60 \scriptstyle \pm 0.47$	$\textbf{74.77}_{\pm 0.90}$	86.88±0.59	

Standard few-shot classification. Baseline (1), Baseline-KD (2): prototypical classifier at inference, no feature generation. VFH: our vector feature hallucinator; TFH: our tensor feature hallucinator; TFH-ft: our tensor feature hallucinator followed by novel-task fine-tuning

	(1)
$(x_i)))$	(2)

vectors

Visualizations

t-SNE visualization of the augmented support feature set of an 1-shot task using both ResNet-18 and ResNet-12 CUB original images (row 1) followed by images backbones on *mini*lmageNet and CUB. Colors indicate gen-erated from separately trained reconstructors using as different classes. \star : support features; •: generated input tensorfeatures (row 2) or vector features (row 3). features; ' \times ': query features.

Experiments										
State of the	Cross-domain	Cross-domain few-shot learning:								
		<i>mini</i> IMA	GENET	CU	JB	λίετιορ	mIN-	→CUB	$mIN \rightarrow CI$	FAR-FS
METHOD	DACKBONE	1-shot	5-shot	1-shot	5-shot		1-shot	5-shot	1-shot	5-shot
Dual TriNet [2]	ResNet-18	$58.80 \scriptscriptstyle \pm 1.37$	$76.71 \scriptscriptstyle \pm 0.69$	69.61	84.10	Baseline (1)	$43.14{\scriptstyle\pm0.78}$	$62.20{\scriptstyle\pm0.70}$	$50.25{\scriptstyle \pm 0.86}$	$69.43{\scriptstyle \pm 0.74}$
IDeMe-Net [1]	ResNet-18	$59.14_{\pm 0.86}$	$74.63 \scriptscriptstyle \pm 0.74$	—	—	Baseline-KD (2)	$44.40{\scriptstyle\pm0.82}$	63.83 ±0.73	$51.54{\scriptstyle \pm 0.89}$	$70.40{\scriptstyle \pm 0.72}$
AFHN [3]	ResNet-18	$62.38 \scriptstyle \pm 0.72$	$78.16 \scriptscriptstyle \pm 0.56$	$70.53 \scriptscriptstyle \pm 1.01$	$83.95 \scriptstyle \pm 0.63$	VFH (ours)	$44.77_{\pm 0.79}$	$62.61{\scriptstyle\pm0.73}$	$50.36{\scriptstyle\pm0.87}$	69.31 \pm 0.74
VI-Net [4]	ResNet-18	61.05	78.60	74.76	86.84	TFH (ours)	45 67 +0.80	63 08 +0 73	51 82+0.89	69 77 +0 76
TFH (ours) TFH-ft (ours)	ResNet-18 ResNet-18	$\begin{array}{c} 64.49_{\pm 0.84}\\ \textbf{65.07}_{\pm 0.82}\end{array}$	$\begin{array}{c} 79.94_{\pm 0.60} \\ \textbf{80.81}_{\pm 0.61} \end{array}$	$75.66_{\pm 0.85}$ $75.76_{\pm 0.83}$	$88.39_{\pm 0.49}$ $88.60_{\pm 0.47}$	TFH-ft (ours)	45.96±0.80	63.64 ± 0.74	53.07±0.86	71.29 ±0.75
· · · · · ·						Four chat areas dame	ain dessifie	ation Com		

rew-snot cross-domain classification. Comparison of our IFH to Standard few-shot classification. Comparison of our TFH to SOTA variants and baselines as defined in 2, using ResNet-18 trained on few-shot data augmentation methods. *mini*lmageNet (*m*IN).

Experiments

Alternative c	lassifiers:					Alternative b	ackbone:				
Method	BACKBONE	<i>mini</i> ImageNet		CUB			BACKBONE <i>mini</i> IMAGENET			CUB	
		1-shot	5-shot	1-shot	5-shot	METHOD		1-shot	5-shot	1-shot	5-shot
	Logisti	C REGRE	ESSION				Logist	IC REGR	ESSION		
Baseline-KD (2)	ResNet-18	$61.83 \scriptscriptstyle \pm 0.82$	$79.27 \scriptstyle \pm 0.61$	$72.74_{\pm0.88}$	$87.71 \scriptscriptstyle \pm 0.49$	Baseline	ResNet-12	$61.83 \scriptscriptstyle \pm 0.85$	$79.60{\scriptstyle\pm0.60}$	$68.49_{\scriptscriptstyle \pm 0.49}$	$84.75 \scriptscriptstyle \pm 0.59$
TFH (ours)	ResNet-18	$64.03 \scriptscriptstyle \pm 0.84$	$79.93 \scriptscriptstyle \pm 0.60$	$75.08 \scriptstyle \pm 0.85$	$88.82 \scriptscriptstyle \pm 0.46$	TFH (ours)	ResNet-12	$64.20 \scriptscriptstyle \pm 0.84$	$80.21 \scriptstyle \pm 0.58$	$68.37 \scriptscriptstyle \pm 0.92$	$\textbf{85.12}_{\pm 0.55}$
TFH-ft (ours)	ResNet-18	$64.83 \scriptscriptstyle \pm 0.82$	$80.49 \scriptstyle \pm 0.61$	$\textbf{75.43}_{\pm 0.85}$	$88.52 \scriptstyle \pm 0.48$	TFH-ft (ours)	ResNet-12	$64.53 \scriptscriptstyle \pm 0.53$	80.25 _{±0.62}	69.59 _{±0.88}	$85.08 \scriptscriptstyle \pm 0.55$
	SUPPORT V	ECTOR	MACHINI	Ð			Support	VECTOR	MACHIN	E	
Baseline-KD (2)	ResNet-18	$60.21 \scriptstyle \pm 0.84$	$78.28 \scriptscriptstyle \pm 0.61$	$71.23{\scriptstyle \pm 0.89}$	$86.34_{\pm0.52}$	Baseline	ResNet-12	$59.94_{\pm0.84}$	$78.43 \scriptscriptstyle \pm 0.60$	$66.72 \scriptscriptstyle \pm 0.90$	$83.29_{\pm0.60}$
TFH (ours)	ResNet-18	$64.20 \scriptscriptstyle \pm 0.83$	$79.62 \scriptstyle \pm 0.60$	$75.64_{\pm0.85}$	$\textbf{88.74}_{\pm 0.45}$	TFH(ours)	ResNet-12	$64.62 \scriptstyle \pm 0.83$	$79.56 \scriptscriptstyle \pm 0.58$	$68.75\scriptscriptstyle\pm0.90$	$84.05 \scriptscriptstyle \pm 0.56$
TFH-ft (ours)	ResNet-18	$65.06_{\pm 0.82}$	$80.33_{\pm 0.60}$	$75.77 \scriptstyle \pm 0.83$	$88.22 \scriptstyle \pm 0.46$	TFH-ft(ours)	ResNet-12	$64.64_{\scriptscriptstyle \pm 0.86}$	79.88 ±0.62	$69.42 \scriptscriptstyle \pm 0.88$	$84.41 \scriptstyle \pm 0.55$

Alternative classifiers. Our TFH, variants baseline-KD as defined in Alternative backbone network. Our TFH, variants and baselines as 2, using ResNet-18, where at inference, the prototypical classifier is defined in 2, using the publicly available pre-trained ResNet-12 backreplaced by logistic regression or SVM. bones provided by [5].

[1] Z. Chen, Y. Fu, Y.-X. Wang, L. Ma, W. Liu, and M. Hebert. Image deformation meta-networks for one-shot learning. In CVPR, 2019.

[2] Z. Chen, Y. Fu, Y. Zhang, Y. Jiang, X. Xue, and L. Sigal. Multi-level semantic feature augmentation for one-shot learning. *IEEE Transactions on Image Processing*,

[3] K. Li, Y. Zhang, K. Li, and Y. Fu. Adversarial feature hallucination networks for few-shot learning. In CVPR, 2020.

[4] Q. Luo, L. Wang, J. Lv, S. Xiang, and C. Pan. Few-shot learning via feature hallucination with variational inference. In WACV, 2021.

[5] C. Zhang, Y. Cai, G. Lin, and C. Shen. DeepEMD: Few-shot image classification with differentiable earth mover's distance and structured classifiers. In CVPR, 2020.

Imperial College London

	- ·	
Cross-domain	few-shot	learning