

Introduction

- **Goal:** Learning representations using attention mechanisms for instance-level image retrieval
- Introducing the Global-Local Attention Module (GLAM) attached at the end of backbone
- GLAM uses all four forms of attention: local and global, spatial and channel

Contributions

- First study employing all four forms of attention, global and local, channel and spatial
- Empirical evidence of the interaction of all forms of attention
- State of the art on global descriptors without re-ranking for instance-level image retrieval

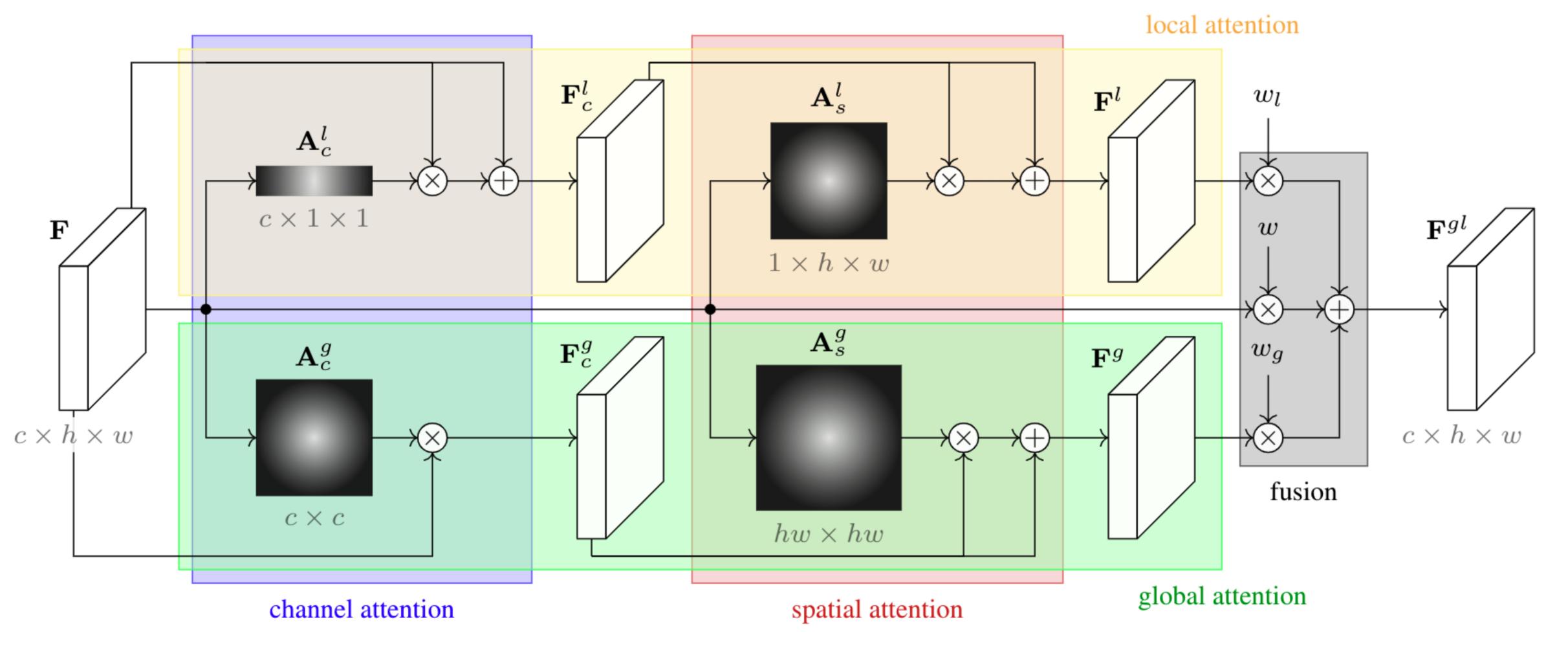
Related work on attention

Method	Lo	CAL	GLO	OBAL	Lrn	Ret
	Spatial	Channel	Spatial	Channel	. 2	
SENet [20]		\checkmark			\checkmark	
ECA-Net [51]		\checkmark			\checkmark	
GCNet [6]		\checkmark			\checkmark	
CBAM [54]	\checkmark	\checkmark			\checkmark	
GE [19]	\checkmark				\checkmark	
NL-Net [52]			\checkmark		\checkmark	
AA-Net [4]			\checkmark		\checkmark	
SAN [59]			\checkmark		\checkmark	
N^{3} Net [34]			\checkmark		\checkmark	
A ² -Net [9]				\checkmark	\checkmark	
GSoP [14]				\checkmark	\checkmark	
OnA [23]	\checkmark					\checkmark
AGeM [17]	\checkmark					\checkmark
CroW [24]	\checkmark	\checkmark				\checkmark
CRN [25]	\checkmark				\checkmark	\checkmark
DELF [29]	\checkmark				\checkmark	\checkmark
DELG [5]	\checkmark				\checkmark	\checkmark
Tolias <i>et al</i> . [47]	\checkmark				\checkmark	\checkmark
SOLAR [28]			\checkmark		\checkmark	\checkmark
Ours	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

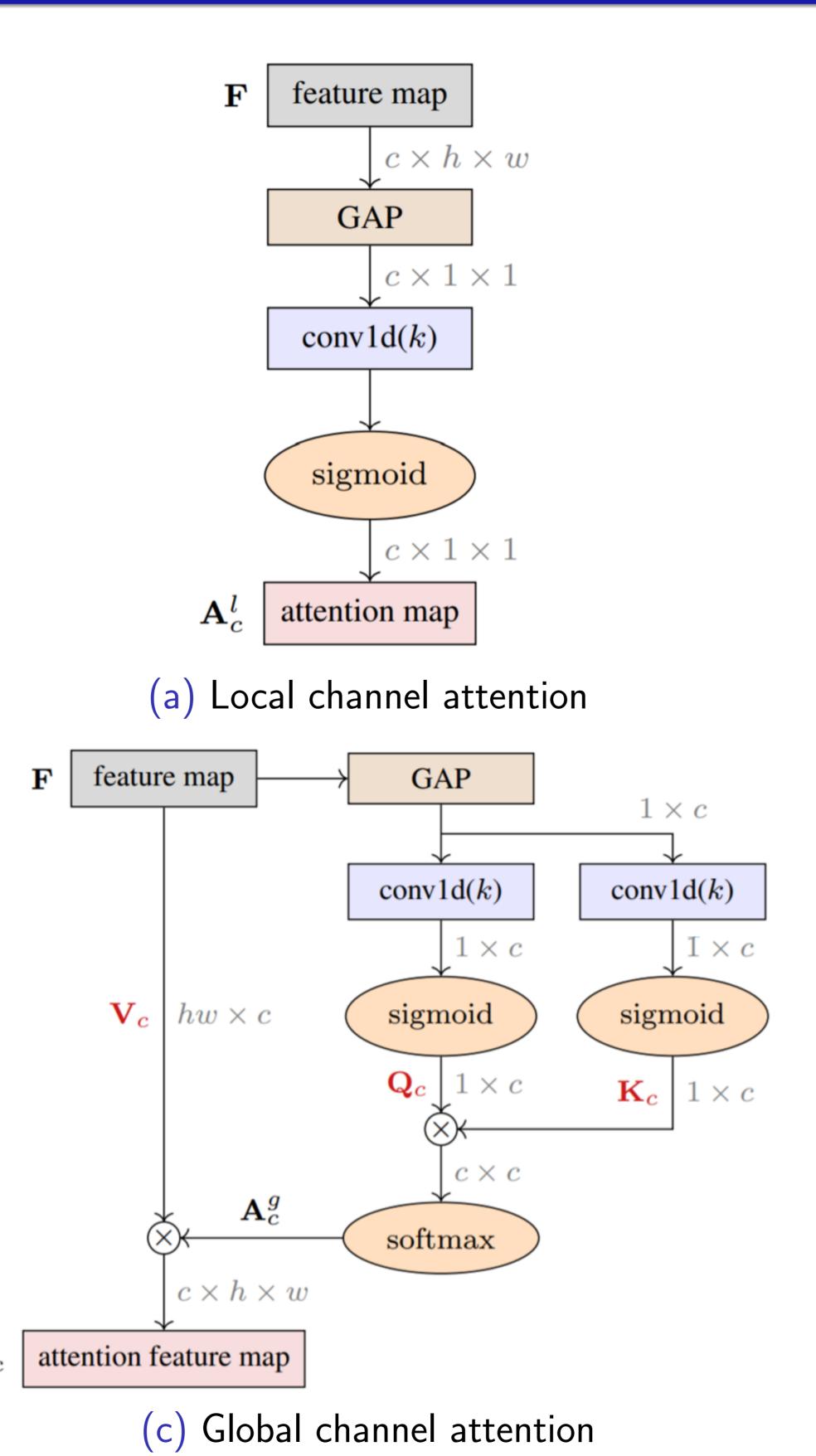
LRN: learned; RET: applied to instance-level image retrieval.

Datasets and implementation details

- ResNet101+GeM pooling
- Global descriptor only without re-ranking
- Training : Google Landmarks v2 clean (GLDv2-clean) by ArcFace loss
- Test set: Oxford5k, Paris6k, Revisited Oxford (ROxf)/Paris (RPar) with and without 1M distractors
- Metrics: mean average precision (mAP), mean precision at 10 (mP)
- Mini-batch samples with similar aspect ratios resized together
- Multi-resolution representation for the final feature at inference


All the attention you need: Global-local, spatial-channel attention for image retrieval

Chull Hwan Song¹, Hye Joo Han¹, Yannnis Avrithis²

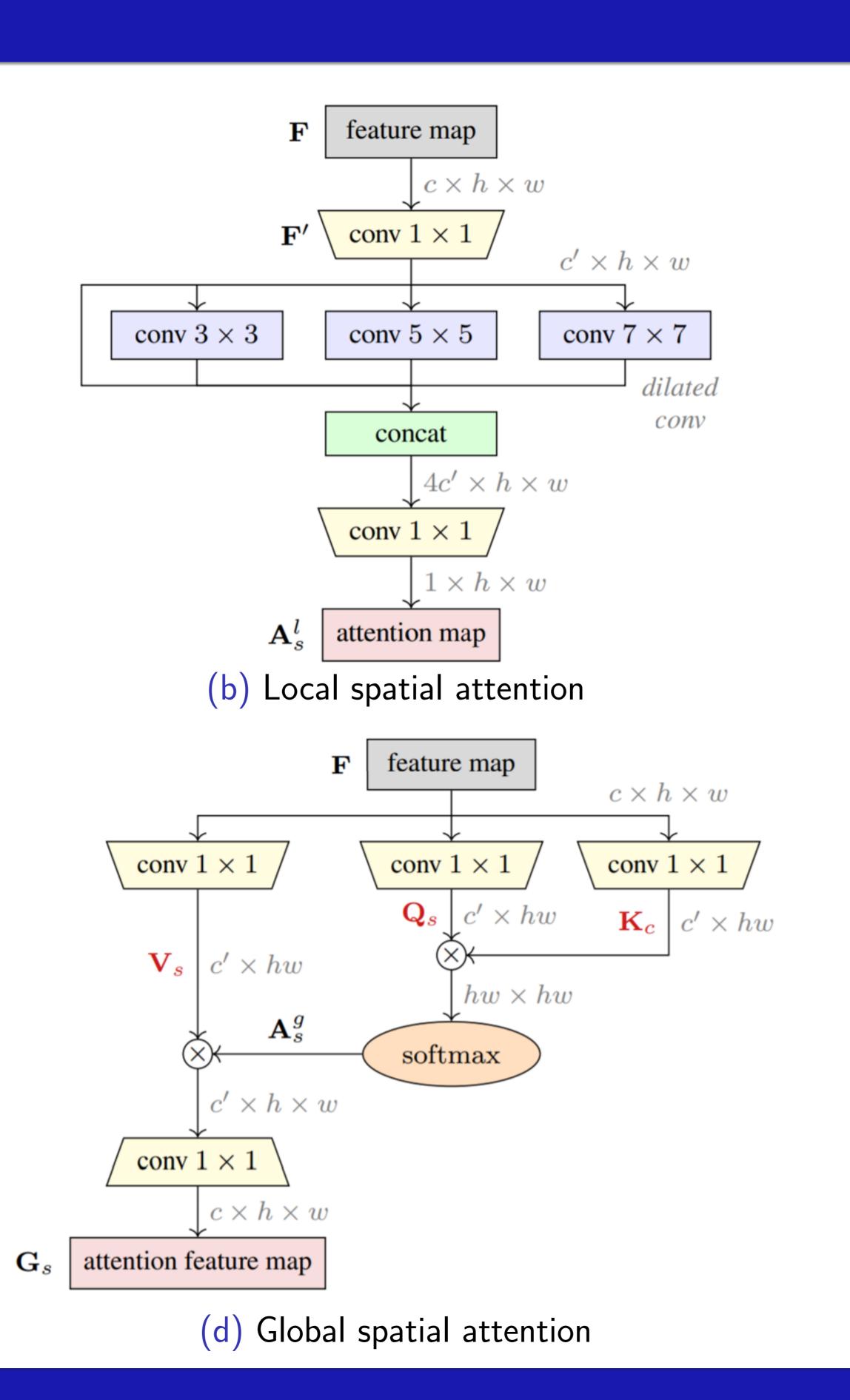

¹Odd Concepts, INC ²Athena RC

Global-local attention module (GLAM)

- Local attention weights channels or locations independently
- **Global attention** captures pairwise interaction within channels or within spatial locations.
- Four attention maps used: local channel (A_c^l) , local spatial (A_s^l) , global channel (A_c^g) and global spatial (\mathbf{A}_{s}^{g}) .
- \blacktriangleright The input feature map F is weighted into local (F^l) and global (F^g) attention feature maps, which are fused with ${f F}$ to yield the global-local attention feature map ${f F}^{gl}$.

Attention Layers

baseline.


Method	TRAIN SET	DIM	Oxf5k	Par6k	$\mathcal{R}ME$	DIUM	\mathcal{R} Hard		
					$\mathcal{R}Oxf$				
GeM-Siamese [37, 35]	SfM-120k	2048	87.8	92.7	64.7	77.2	38.5	56.3	
SOLAR [28]	GLDv1-noisy	2048	_	_	69.9	81.6	47.9	64.5	
DELG [5]	GLDv1-noisy	2048	_	_	73.2	82.4	51.2	64.7	
GLDv2 [53]	GLDv2-clean	2048	—	—	74.2	84.9	51.6	70.3	
GLAM (Ours)	NC-clean	512	77.8	85.8	51.6	68.1	20.9	44.7	
	GLDv1-noisy	512	92.8	95.0	73.7	83.5	49.8	69.4	
	GLDv2-noisy	512	93.3	95.3	75.7	86.0	53.1	73.8	
	GLDv2-clean	512	94.2	95.6	78.6	88.5	60.2	76.8	

Method	TRAIN SET	DIM	Oxf5k	Par6k	$\mathcal{R}ME$	DIUM	\mathcal{R} Hard		
					$\mathcal{R}Oxf$				
GeM-Siamese [37, 35]	SfM-120k	2048	87.8	92.7	64.7	77.2	38.5	56.3	
SOLAR [28]	GLDv1-noisy	2048	_	_	69.9	81.6	47.9	64.5	
DELG [5]	GLDv1-noisy	2048	_	_	73.2	82.4	51.2	64.7	
GLDv2 [53]	GLDv2-clean	2048	_		74.2	84.9	51.6	70.3	
GLAM (Ours)	NC-clean	512	77.8	85.8	51.6	68.1	20.9	44.7	
	GLDv1-noisy	512	92.8	95.0	73.7	83.5	49.8	69.4	
	GLDv2-noisy	512	93.3	95.3	75.7	86.0	53.1	73.8	
	GLDv2-clean	512	94.2	95.6	78.6	88.5	60.2	76.8	

State of the art comparisons

			BA	SE	MEDIUM						HARD									
Method	TRAIN SET	Dim	Ox5k	Par6k	R(Dxf	$+\mathcal{R}$	1M	\mathcal{R} F	Par	$+\mathcal{R}$	1M	$\mathcal{R}($	Dxf	$+\mathcal{R}$	1 M	\mathcal{R}^{I}	Par	$+\mathcal{R}$	1M
			mAP	mAP	mAP	mP	mAP	mP	mAP	mP	mAP	mP	mAP	mP	mAP	mP	mAP	mP	mAP	mP
SPoC-V16 [2, 35]	[O]	512	53.1*	_	38.0	54.6	17.1	33.3	59.8	93.0	30.3	83.0	11.4	20.9	0.9	2.9	32.4	69.7	7.6	30.6
SPoC-R101 [35]	[O]	2048	-	_	39.8	61.0	21.5	40.4	69.2	96.7	41.6	92.0	12.4	23.8	2.8	5.6	44.7	78.0	15.3	54.4
CroW-V16 [24, 35]	[O]	512	70.8	79.7	41.4	58.8	22.5	40.5	62.9	94.4	34.1	87.1	13.9	25.7	3.0	6.6	36.9	77.9	10.3	45.1
CroW-R101 [35]	[O]	2048	_	_	42.4	61.9	21.2	39.4	70.4	97.1	42.7	92.9	13.3	27.7	3.3	9.3	47.2	83.6	16.3	61.6
MAC-V16-Siamese [36, 35]	[O]	512	80.0	82.9	37.8	57.8	21.8	39.7	59.2	93.3	33.6	87.1	14.6	27.0	7.4	11.9	35.9	78.4	13.2	54.7
MAC-R101-Siamese [35]	[O]	2048	_	_	41.7	65.0	24.2	43.7	66.2	96.4	40.8	93.0	18.0	32.9	5.7	14.4	44.1	86.3	18.2	67.7
RMAC-V16-Siamese [36, 35]	[O]	512	80.1	85.0	42.5	62.8	21.7	40.3	66.2	95.4	39.9	88.9	12.0	26.1	1.7	5.8	40.9	77.1	14.8	54.0
RMAC-R101-Siamese [35]	[O]	2048	-	_	49.8	68.9	29.2	48.9	74.0	97.7	49.3	93.7	18.5	32.2	4.5	13.0	52.1	87.1	21.3	67.4
RMAC-R101-Triplet [16, 35]	NC-clean	2048	86.1	94.5	60.9	78.1	39.3	62.1	78.9	96.9	54.8	93.9	32.4	50.0	12.5	24.9	59.4	86.1	28.0	70.0
GeM-R101-Siamese [37, 35]	SfM-120k	2048	87.8	92.7	64.7	84.7	45.2	71.7	77.2	98.1	52.3	95.3	38.5	53.0	19.9	34.9	56.3	89.1	24.7	73.3
AGeM-R101-Siamese [17]	SfM-120k	2048	- I	_	67.0	_	_	_	78.1	_	_	_	40.7	_	_	_	57.3	_	_	_
SOLAR-GeM-R101-Triplet/SOS [28]	GLDv1-noisy	2048	_	_	69.9	86.7	53.5	76.7	81.6	97.1	59.2	94.9	47.9	63.0	29.9	48.9	64.5	93.0	33.4	81.6
DELG-GeM-R101-ArcFace [5]	GLDv1-noisy	2048	_	_	73.2	_	54.8	_	82.4	_	61.8	_	51.2	_	30.3	_	64.7	_	35.5	_
GeM-R101-ArcFace [53]	GLDv2-clean	2048	-	-	74.2	-	-	_	84.9	-	-	-	51.6	-	-	_	70.3	-	-	—
GLAM-GeM-R101-ArcFace baseline	GLDv2-clean	512	91.9	94.5	72.8	86.7	58.1	78.2	84.2	95.9	63.9	93.3	49.9	62.1	31.6	49.7	69.7	88.4	37.7	73.7
+local	GLDv2-clean	512	91.2	95.4	73.7	86.2	60.5	77.4	86.5	95.6	68. 0	93.9	52.6	65.3	36.1	55.6	73.7	89.3	44.7	79.1
+global	GLDv2-clean	512	92.3	95.3	77.2	87.0	63.8	79.3	86.7	95.4	67.8	93.7	57.4	69.6	38.7	57.9	75.0	89.4	45.0	77.0
+global+local	GLDv2-clean	512	94.2	95.6	78.6	88.2	68.0	82.4	88.5	97.0	73.5	94.9	60.2	72.9	43.5	62.1	76.8	93.4	53.1	84.0

V16: VGG16; R101: ResNet101. [O]: Off-the-shelf (pre-trained on ImageNet). Red: best results. Black bold: best previous methods. Blue: GLAM higher than previous methods.

Oddconcepts

mAP comparison of spatial and channel variants of our local and global attention modules to the

Method	Oxf5k	Par6k	RME	DIUM	\mathcal{R} Hard			
			$\mathcal{R}Oxf$	\mathcal{R} Par	ROxf	\mathcal{R} Par		
GLAM baseline	91.9	94.5	72.8	84.2	49.9	69.7		
+local-channel	91.3	95.3	72.2	85.8	48.3	73.1		
+local-spatial	91.0	95.1	72.1	85.3	48.3	71.9		
+local	91.2	95.4	73.7	86.5	52.6	75.0		
+global-channel	92.5	94.4	73.3	84.4	49.8	70.1		
+global-spatial	92.4	95.1	73.2	86.3	50.0	72.7		
+global	92.3	95.3	77.2	86.7	57.4	75.0		
+global+local	94.2	95.6	78.6	88.5	60.2	76.8		

mAP comparison of our best model trained on different training sets against SOTA. Red: best results. Blue: GLAM higher than DELG on GLDv1-noisy.

Paper: https://arxiv.org/abs/2107.08000 Contact: hyejoo@oddconcepts.kr