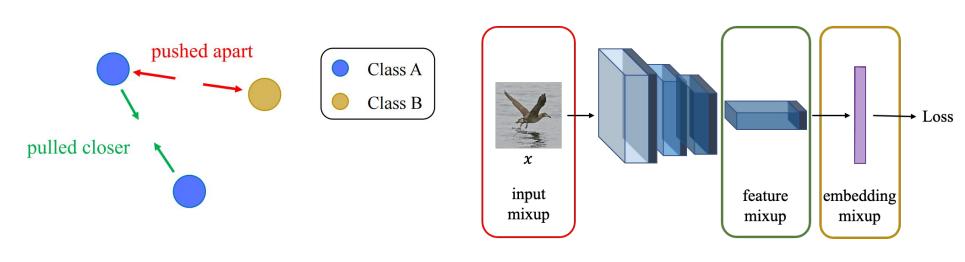


It Takes Two to Tango: Mixup for Deep Metric Learning

Shashanka Venkataramanan, Bill Psomas, Ewa Kijak, Laurent Amsaleg, Konstantinos Karantzalos, Yannis Avrithis

Deep Metric Learning & Mixup

- Goal Learning a discriminative representation that generalizes to unseen classes.
- How? Intra-class embeddings are pulled closer and inter-class embeddings are pushed apart.
- Motivation Classes during training and inference are different, interpolation-based data augmentation e.g. mixup plays significant role.



Left: Deep Metric Learning has binary labels (positive/negative). Right: Mixup [1, 2] interpolates between examples (input, feature or embedding) and has non-binary mixed labels.

Generic Loss Formulation

Additive losses e.g., Contrastive [3] and non-additive losses e.g., Multi-similarity [4] involve:

- A sum over positives P(a) and a sum over negatives N(a).
- A decreasing function ρ^+ of similarity s(a,p) for $p \in P(a)$ and an increasing function ρ^- of similarity s(a,n) for $n \in N(a)$.

Non-additive losses also involve non-linear functions σ^+ and σ^- .

$$\ell(a;\theta) := \sigma^+ \left(\sum_{p \in P(a)} \rho^+(s(a,p)) \right) + \sigma^- \left(\sum_{n \in N(a)} \rho^-(s(a,n)) \right)$$

Positives P(a) and negatives N(a) of anchor a have the same or different class label as the anchor.

A binary class label $y \in \{0, 1\}$ for each example in $P(a) \cup N(a)$ is defined: y = 1 for positives, y = 0 for negatives.

$$\ell(a;\theta) := \tau \left(\sigma^+ \left(\sum_{(x,y) \in U(a)} y \rho^+(s(a,x)) \right) + \sigma^- \left(\sum_{(x,y) \in U(a)} (1-y) \rho^-(s(a,x)) \right) \right)$$
y is binary, only one of the two contributions is non-zero.

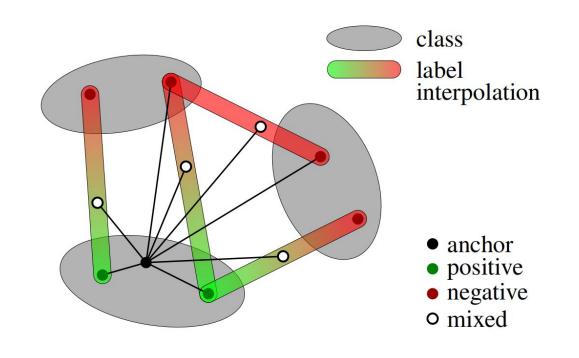
Interpolating Labels

Given M(a), which is the possible choices of mixing pairs (positive-positive, positive-negative, negative-negative), the labeled mixed embedding is:

$$V(a) = \{ f_{\lambda}(x, x'), \min_{\lambda}(y, y') : (x, y), (x', y') \in M(a) \}$$

$$\widetilde{\ell}(a;\theta) := \tau \left(\sigma^+ \left(\sum_{(v,y) \in V(a)} y \rho^+(s(a,v)) \right) + \sigma^- \left(\sum_{(v,y) \in V(a)} (1-y) \rho^-(s(a,v)) \right) \right)$$

$$\text{y } \in [0,1], \text{ both contributions are non-zero.}$$



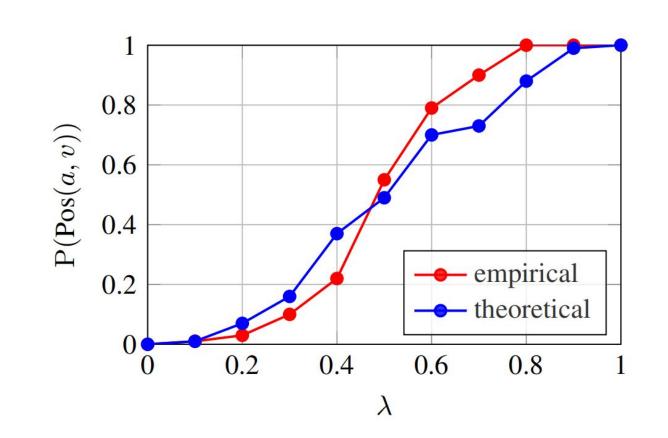
Metrix (=Metrix Mix) allows an anchor to interact with *positive* (same class), negative (different class) and interpolated examples, which also have interpolated labels.

Analysis: Mixed Embeddings and Positivity

- Pos(a, v): a mixed embedding v behaves as "positive" for anchor a.
- "Positivity" is equivalent to $\partial \widetilde{\ell}(a;\theta)/\partial s(a,v) \leq 0$.
- Under *positive-negative* mixing, i.e. $M(a) \subset U^+(a) \times U^-(a)$, the probability of Pos(a, v) as a function of λ is:

$$P(Pos(a, v)) = F_{\lambda} \left(\frac{1}{\beta + \gamma} \ln \left(\frac{\lambda}{1 - \lambda} \right) + m \right)$$

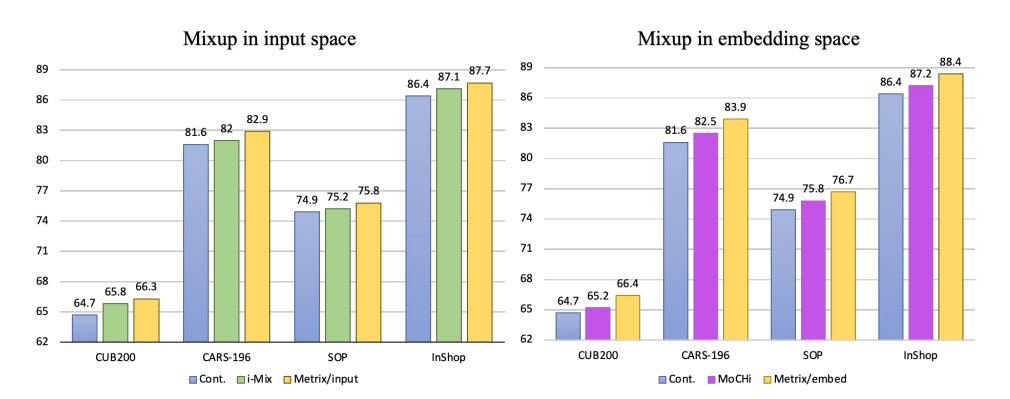
We measure this function both empirically and theoretically:



Improving Losses with Metrix

	CUB200 [5]			CARS196 [6]			SOP [7]			IN-SHOP [8]		
Method	R@1	R@2	R@4	R@1	R@2	R@4	R@1	R@10	R@100	R@1	R@10	R@20
MS	67.8	77.8	85.6	87.8	92.7	95.3	76.9	89.8	95.9	90.1	97.6	98.4
MS +Metrix	71.4	80.6	86.8	89.6	94.2	96.0	81.0	92.0	97.2	92.2	98.5	98.6
PA [9]	69.5	79.3.	87.0	87.6	92.3	95.5	79.1	90.8	96.2	90.0	97.4	98.2
PA +Metrix	71.0	81.8	88.2	89.1	93.6	96.7	81.3	91.7	96.9	91.9	98.2	98.8

Comparison with other Mixing Methods

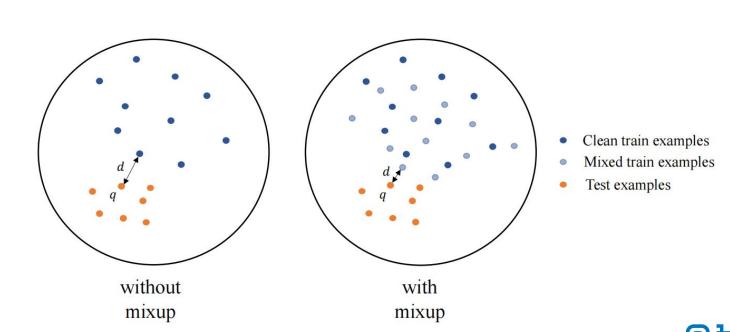


How Does Metrix Improve Representations?

• *Utilization* of the training set *X* by the test set *Q* as:

$$u(Q, X) = \frac{1}{|Q|} \sum_{q \in Q} \min_{x \in X} \|f(q) - f(x)\|^2$$

 Low utilization indicates that there are examples in the training set that are similar to test examples.



References

[1] Zhang et al., mixup: Beyond Empirical Risk Minimization. In: ICLR, 2018. [2] Verma et al., Manifold Mixup: Better Representations by Interpolating Hidden States. In: ICML, 2019. [3] Hadsell et al., Dimensionality reduction by learning an invariant mapping. In: CVPR, 2006 [4] Wang et al., Multi-similarity loss with general pair weighting for deep metric learning. In: CVPR, 2019. [5] Wah et al., The Caltech-UCSD Birds-200-2011 Dataset. In: CNS-TR-2011-001, 2011. [6] Krause et al., 3d object representations for fine-grained categorization. In: ICCVW, 2013. [7] Song et al., Deep metric learning via lifted structure feature embedding. In: CVPR, 2016 [8] Liu et al., Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In: CVPR, 2016. [9] Kim et al., Proxy Anchor Loss for Deep Metric Learning. In: CVPR, 2020. [10] Lee et al., I-mix: A domain-agnostic strategy for contrastive representation learning. In: ICLR, 2021. [11] Kalantidis et al., Hard Negative Mixing for Contrastive Learning. In: NeurIPS, 2020

