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It Takes Two to Tango:

Mixup for Deep Metric Learning
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Deep Metric Learning & Mixup

e Goal - Learning a discriminative representation that generalizes to
unseen classes.

e How? - Intra-class embeddings are pulled closer and inter-class
embeddings are pushed apart.

e Motivation - Classes during training and inference are different,
interpolation-based data augmentation e.g. mixup plays significant role.
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Left: Deep Metric Learning has binary labels (positive/negative).
Right: Mixup [1, 2] interpolates between examples (input, feature or
embedding) and has non-binary mixed labels.

Generic Loss Formulation

Additive losses e.g., Contrastive [3] and non-additive losses e.g.,

Multi-similarity [4] involve:

e A sum over positives P(a) and a sum over negatives N(a).

e Adecreasing function p™of similarity s(a,p) for p € P(a) and an
increasing function p~ of similarity s(a,n)for n € N(a).

Non-additive losses also involve non-linear functions o and o .
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Positives P(a) and negatives N(a) of anchor a have the same or different
class as the anchor.

A binary class y € {0, 1}for each example in P(a) U N(a)is defined:
y = 1 for positives, y = 0 for negatives.
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\ y is binary, only one of the two /

contributions is non-zero.

Interpolating Labels

Given M (a), which is the possible choices of mixing pairs (positive-positive,
positive-negative, negative-negative), the labeled mixed embedding is:

V(a) = {fa(z,2),mixa(y, ¥') : (2,9), (2", y') € M(a)}
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y € [0,1], both contributions
are non-zero.
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Metrix (=Metrix Mix) allows an anchor to interact with positive (same class),
negative (different class) and interpolated examples, which also have
interpolated /abels.

Analysis: Mixed Embeddings and Positivity

e Pos(a,v): a mixed embedding v behaves as “positive” for anchor a.
e “Positivity” is equivalent to 8¢(a;6)/ds(a,v) < 0.
e Under positive-negative mixing, i.e. M (a) C Ut (a) x U (a), the probability

of Pos(a,v)as a function of ) is:

P(Pos(a, v)) = F) ( i In (L> +m)
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e \We measure this function both empirically and theoretically:
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Improving Losses with Metrix

CUB200 [5] CARS196 [6] SOP [7] IN-SHOP [8]

Method | R@1 R@2 R@4| R@1 R@2 R@4 |R@1 R@10 R@100 | R@1 R@10 R@20

MS 678 778 856 | 87.8 92.7 953 | 769 8938 95.9 90.1 97.6 98.4
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Comparison with other Mixing Methods

Mixup in input space Mixup in embedding space
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How Does Metrix Improve Representations?

e Ultilization of the training set X by the test set  as:

e Low utilization indicates that there are examples in the training set that
are similar to test examples.

® (lean train examples
e Mixed train examples

» Test examples
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