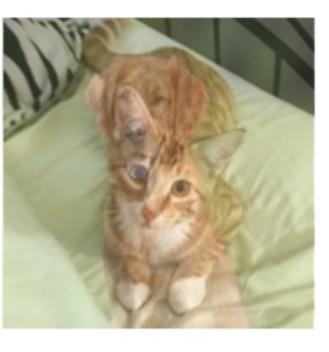






#### MIXUP IMPROVES GENERALIZATION


- Data Augmentation technique that interpolates between pairs of examples (input/feature) and its labels.
- Flattens class representations, reduces overconfident incorrect predictions and smoothens decision boundaries.



[1.0, 0.0] cat dog



cat dog



[0.7, 0.3] cat dog

# EXISTING MIXUP METHODS

- Recent works combine multiple objects in an image by cut-and-paste [3] or use salient regions [4, 5].
- This results in an **overlay** of one image onto another.
- These methods make efficient use of training pixels; interpolation can be better defined.



SaliencyMix

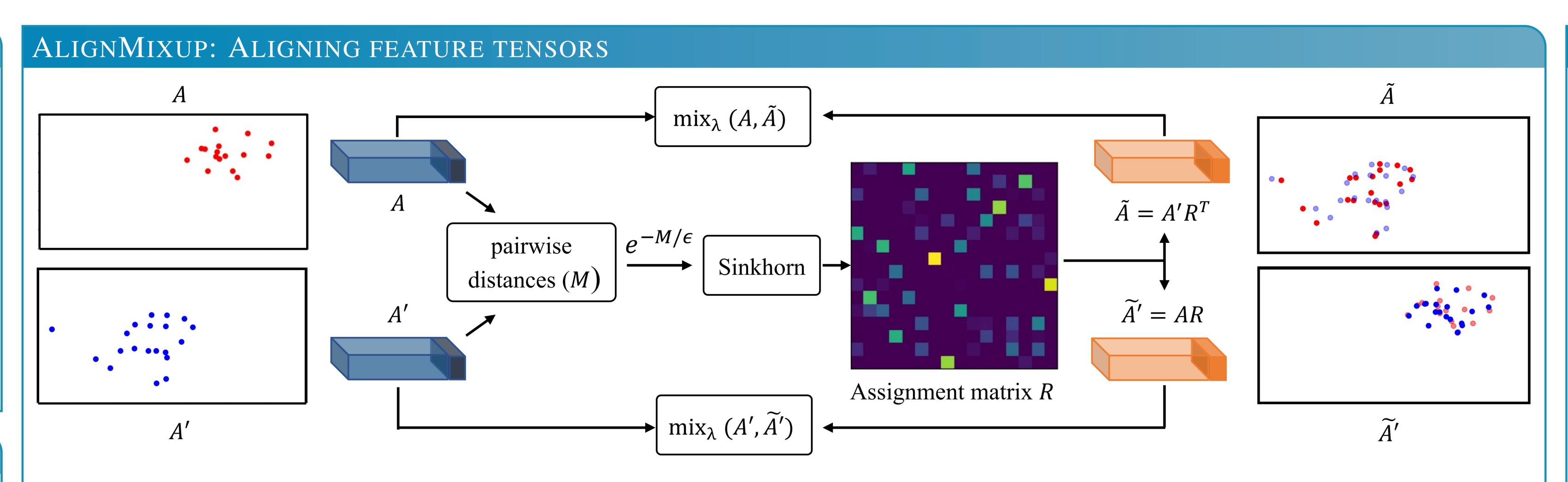


## ALIGNMIXUP: DEFORMATION

- **Deformation** a natural way of interpolating images e.g. one image may deform into another, in a continuous way.
- Traversing along the manifold of representations obtained from **deeper layers** captures salient characteristics.



#### AlignMixup:


- Geometrically aligning features feature in soft correspondences.
- Alignment is based on **optimal transport** and **Sinkhorn divergence**.

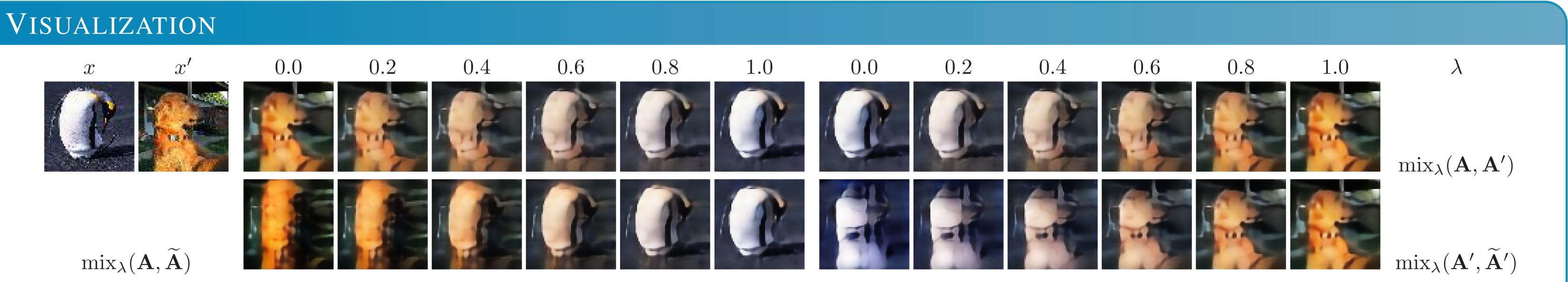
# **AlignMixup: Improving Representations By Interpolating Aligned Features**

# Shashanka Venkataramanan<sup>1</sup>, Ewa Kijak<sup>1</sup>, Laurent Amsaleg<sup>1</sup>, and Yannis Avrithis<sup>2</sup>

<sup>1</sup>Inria, Univ Rennes, CNRS, IRISA; <sup>2</sup>Athena Research Center

shashanka.venkataramanan@inria.fr




#### **ALIGNMENT:**

- Cost matrix  $M: r \times r$ , where  $: m_{ij} := ||a_i a'_j||^2$ .  $r = h \times w; a_j, a'_j \in \mathbb{R}^c$  are columns of  $\mathbf{A}, \mathbf{A}'$  representing a spatial position in the original image x, x'.
- Transport plan,  $r \times r$  matrix  $P \in U_r$ , where  $U_r := \{P \in \mathbb{R}^{r \times r}_+ : P\mathbf{1} = P^{\top}\mathbf{1} = \mathbf{1}/r\}$
- Optimization function  $P^* = \arg \min_{P \in U_r} \langle P, M \rangle \epsilon H(P)$
- Assignment Matrix  $R := rP^*$ ;  $r_{ij} \in R$  expresses the probability with which column  $a_i$  of A corresponds to column  $a'_i$  of A'.
- Alignment  $\widetilde{\mathbf{A}} := \mathbf{A}' R^{\top}$  and  $\widetilde{\mathbf{A}}' := \mathbf{A} R$  column  $\widetilde{a}_i$  of  $c \times r$  matrix  $\widetilde{\mathbf{A}}$  is a convex combination of columns of A' that corresponds to the same column  $a_i$  of A.
- $\widetilde{\mathbf{A}}$  represents  $\mathbf{A}$  aligned to  $\mathbf{A}'$ , and  $\widetilde{\mathbf{A}}'$  represents  $\mathbf{A}'$  aligned to  $\mathbf{A}$ .

#### **INTERPOLATION:**

• We interpolate between  $\widetilde{\mathbf{A}}$  and  $\mathbf{A}$ , and between  $\widetilde{\mathbf{A}}'$  and  $\mathbf{A}'$  as

| $\mathrm{mix}_\lambda(\mathbf{A},\widetilde{\mathbf{A}})$ : |   |
|-------------------------------------------------------------|---|
| $	ext{mix}_{\lambda}(\mathbf{A}',\widetilde{\mathbf{A}}')$  | ) |



- Asymmetric morphing, where one object continuously deforms into itself.
- Retain geometry or pose of the image and keep the coordinates and the appearance or texture of the other.





## EXPERIMENTAL RESULTS

#### Image Classification

| Dataset                   | CIFAR-10     | CIFAR-100 | TI           | IMNET |
|---------------------------|--------------|-----------|--------------|-------|
| Network                   | R-18         | R-18      | R-18         | R-50  |
| Baseline                  | 5.19         | 23.24     | 43.40        | 23.68 |
|                           | 4.03         | 20.21     | 43.48        | 22.58 |
| Input [2]<br>Manifold [1] | 4.03<br>2.95 | 19.80     | 40.76        | 22.58 |
| PuzzleMix [4]             | 2.93         | 20.01     | 36.52        | 21.24 |
| Co-Mixup [5]              | 2.89         | 19.81     | 35.85        |       |
| StyleCutMix [9]           | 3.06         | 19.34     | 34.49        |       |
| AlignMixup (ours)         | 2.95         | 18.29     | 33.13        | 20.68 |
| AlignMixup/AE (ours)      | <b>2.83</b>  | 17.82     | <b>32.73</b> | 18.83 |
| Gain                      | +0.06        | +1.52     | +1.76        | +2.41 |

*Image classification* top-1 error (%): lower is better. Gain: reduction of error. TI: TinyImagenet, ImNet: ImageNet; R: PreActResnet.

#### Weakly-supervised Object Localization

| METRIC            | TOP-1 LOC. |           | MaxboxAcc-v2 |           |
|-------------------|------------|-----------|--------------|-----------|
| Network           | VGG-GAP    | ResNet-50 | VGG-GAP      | ResNet-50 |
| Baseline CAM [8]  | 37.1       | 49.4      | 59.0         | 59.7      |
| Input [2]         | 41.7       | 49.3      | 57.1         | 60.6      |
| CutMix [3]        | 52.5       | 54.8      | 62.6         | 64.8      |
| AlignMixup (ours) | 53.1       | 56.2      | 63.8         | 65.4      |
| Gain              | +0.6       | +1.4      | +1.2         | +0.6      |

Weakly-supervised object localization on CUB200-2011. Top-1 localization accuracy (%): higher is better. Gain: increase in accuracy.

#### REFERENCES

- [1] Verma et al. Manifold mixup: Better representations by interpolating hidden states *ICML*, 2019.
  [2] Zhang et al. mixup: Beyond empirical risk minimization *ICLR*, 2018.
- Yun et al. Cutmix: Regularization strategy to train strong classifiers with localizable features ICCV, 2019.
- [] Kim et al. Puzzle mix: Exploiting saliency and local statistics for optimal mixup *ICML*, 2020. [] Kim et al. Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity *ICLR*, 2021.
- [6] Bengio et al. Better mixing via deep representations *ICML*, 2013.
- [7] Choy et al. Universal Correspondence Network NIPS, 2016.
- [8] Zhou et al. Learning deep features for discriminative localization CVPR, 2016.
- [9] Hong et al. StyleMix: Separating Content and Style for Enhanced Data Augmentation CVPR, 2021.

#### ACKNOWLEDGEMENT

This work was partially supported by the ANR-19-CE23-0028 MEERQAT and was performed using the HPC resources from GENCI-IDRIS Grant 2021 AD011012528.