

INTRODUCTION

Scope: Self-supervised learning of Vision Transformers via Masked Image Modeling (MIM)

- Mask a portion of the input patch tokens
- Train a Transformer to reconstruct them

Focus: Which patch tokens to mask?

- Not well explored
- Prior works use (block-wise) random token masking

Approach: Attention-guided token masking (AttMask)

- Leverage ViT's self-attention to mask highly-attended tokens
- Excellent fit to distillation-based approaches, e.g., iBOT [1], DINO [6]

ATTMASK: ATTENTION-GUIDED MASKED IMAGE MODELING

Issues with (block-wise) random masking

- Less likely to hide "interesting" parts \rightarrow easy reconstruction
- Compensating with extreme masking (e.g., 75% of tokens) \rightarrow overly aggressive

Exploring attention-guided masking (AttMask):

AttMask	Masked Tokens	Task	Performance
X Low	low-attended	very easy	\downarrow
√High	high-attended	very challenging	\uparrow
√ Hint	high-attended, except hints	challenging	介

Input Image

Attention Map

What to Hide from Your Students: Attention-Guided Masked Image Modeling

Ioannis Kakogeorgiou¹, Spyros Gidaris², Bill Psomas¹, Yannis Avrithis^{3,4}, Andrei Bursuc², Konstantinos Karantzalos¹, Nikos Komodakis^{5,6} ¹National Technical University of Athens; ²valeo.ai; ³Institute of Advanced Research in Artificial Intelligence (IARAI); ⁴Athena RC; ⁵University of Crete; ⁶ IACM-Forth gkakogeorgiou@central.ntua.gr

AttMask-Hint

INCORPORATING ATTMASK INTO DISTILLATION-BASED METHODS

JALITATIVE EXAMINATION OF MASKING STRATEGIES

EXPERIMENTAL RESULTS

valuating token ma	asking stra	tegies	by pre-	training	g on 20% o	of ImageNet-1k	42% fewer
IBOT MASKING	$R_{ATIO}(\%)$	IMAGE	Net-1k (CIFAR10	CIFAR100		epochs
		k-NN	LINEAR	Fine-7	ΓUNING	10	Random Block-Wise [†]
Random Block-Wise [†]	10-50	46.7	56.4	98.0	86.0		20 40 60 80 100 epoch
Random Random	75 10-50	47.3 47.8	55.5 56.7	97.7 98.0	85.5 86.1	MASK RATIO r (%)	10-30 10-50 10-70 30
AttMask-Low (ours) AttMask-Hint (ours) AttMask-High (ours)	10-50 10-50 10-50	44.0 49.5 49.7	53.4 57.5 57.9	97.6 98.1 98.2	84.6 86.6 86.6	Random Block-Wise Random AttMask-High	46.546.7 [†] 47.146.947.647.847.848.249.5 49.7 48.549.1

Evaluating on ImageNet-1k by pre-training on full ImageNet-1k for 100 (left) and 300 (right) epochs

				Method	F	ULL	FEW EXAMPLES	
Method	FULL		FEW EXAMPLES	NIEIHUD	k-NN LINEAR		$\nu = 1$ 5 10 20	
	k-NN	LINEAR	$\nu = 1$ 5 10 20	SimCLR [7]	_	69.0		
DINO [6]	70.9	74.6		BYOL [8]	66.6	71.4		
MST [5]	72.1	75.0		MoBY [9]	-	72.8		
iBOT [1]	71.5	74.4	32.9 47.6 52.5 56.4	DINO [6]	72.8	76.1		
iBOT+AttMask-High	72.5	75.7	37.1 51.3 55.7 59.1	MST [5]	75.0	76.9		
iBOT+AttMask-Hint	72.8	76.1	37.6 52.2 56.4 59.6	iBOT [1]	74.6	77.4	38.9 54.1 58.5 61.9	
				iBOT+AttMask-High	75.0	77.5	40.4 55.5 59.9 63.1	

Transfer learning with fine-tuning on object detection (COCO) and semantic segmentation (ADE20K) and without fine-tuning on Image Retrieval ($\mathcal{R}OXFORD$ and $\mathcal{R}PARIS$) and video object segmentation (DAVIS).

Method	COCO ADE20K		ROXFORD		\mathcal{R} Paris		DAVIS 2017			
	AP^b	AP^m	mIoU	Medium	Hard	MEDIUM	Hard	$ (\mathcal{J}\&\mathcal{F})_m $	\mathcal{J}_m	\mathcal{F}_m
iBOT	48.2	41.8	44.9	31.0	11.7	56.2	28.9	60.5	59.5	61.4
iBOT+AttMask	48.8	42.0	45.3	33.5	12.1	59.0	31.5	62.1	60.6	63.

CONCLUSION

- Zero additional cost
- Benefits over random masking
- with limited data.

REFERENCES

[1] Zhou et al. iBOT: Image BERT Pre-training with Online Tokenizer *ICLR*, 2022. [2] Xie et al. SimMIM: A Simple Framework for Masked Image Modeling *CVPR*, 2022. [3] Bao et al. BEiT: BERT Pre-Training of Image Transformers *ICLR*, 2022 [4] He et al. Masked Autoencoders Are Scalable Vision Learners CVPR, 2022. [5] Li et al. MST: Masked Self-Supervised Transformer for Visual Representation *NIPS*, 2021.

Incorporating AttMask into the MIM-based self-supervised method iBOT [1] using ViT

• Outperforms the other self-supervised distillation-based MIM methods

• Major improvements in challenging tasks; i.e., using features without additional finetuning, or working

[6]	(
[7]	(
[8]	(
[0]	
[9]	4

Caron et al. Emerging properties in self-supervised vision transformers ICCV, 2021. Chen et al. A simple framework for contrastive learning of visual representations ICML, 2020. Grill et al. Bootstrap your own latent-a new approach to self-supervised learning NIPS, 2020. Xie et al. Self-supervised learning with swin transformers arXiv, 2021.