### Introduction

- In instance-level image retrieval, vision transformers have not yet shown good performance compared to convolutional networks
- Goal: Improve their performance, without introducing a new architecture
- We show that a hybrid architecture is more effective than plain transformers
- We build a global representation by an advanced pooling mechanism over token embeddings

### Contributions

- Collect global & local features from [CLS] & patch tokens respectively of multiple layers
- Dynamic position embedding (DPE) to handle dynamic image size at training
- Enhanced locality module (ELM) to investigate inductive bias in the deeper layers
- Training on all common datasets: NC-clean, SfM-120k, GLDv1-noisy, GLDv2-clean
- State of the art on image retrieval using vision transformers for the first time

### **Deep Token Pooling (DToP)**

- $\blacktriangleright$  Transformer encoder with L layers, each of  $M = w \times h$  patch tokens
- $\blacktriangleright$  Mapping of layer  $\ell$  for  $\ell = 1, \ldots, L$

$$Z^{\ell} = f^{\ell}(Z^{\ell-1}) = [\mathbf{z}_{[\text{CLS}]}^{\ell}; \mathbf{z}_{1}^{\ell}; \dots; \mathbf{z}_{M}^{\ell}] \in \mathbb{R}^{(M+1) \times \ell}$$

- $\triangleright A^{\ell} \in \mathbb{R}^{w \times h \times D}$ : sequence  $\mathbf{z}_1^{\ell}, \ldots, \mathbf{z}_M^{\ell}$  of patch token embeddings of layer  $\ell$ , unfolded into  $w \times h \times D$  tensor
- Given  $k \in \{1, \ldots, L\}$ , collect multi-layer [CLS] and patch features from the last k layers

$$F_c = [\mathbf{z}_{[\text{CLS}]}^{L-k+1}; \dots; \mathbf{z}_{[\text{CLS}]}^{L}] \in \mathbb{R}^{k \times D}$$
$$F_p = [A^{L-k+1}; \dots; A^{L}] \in \mathbb{R}^{k \times w \times h \times D}$$

- $\blacktriangleright$  Global branch: multi-layer [CLS] features  $F_c$  mapped to N-dimensional space  $\mathbf{u}_c = \mathrm{FC}(F_c) \in \mathbb{R}^N$
- $\blacktriangleright$  Local branch: multi-layer patch features  $F_p$  processed by convolution operations across layers to enhance locality of interactions, followed by global average pooling

$$Y = \operatorname{conv}_{1 \times 1}(F_p) \in \mathbb{R}^{w \times h \times D}$$
$$Y' = \operatorname{FUSE}(Y, \operatorname{ELM}(Y)) \in \mathbb{R}^{w \times h \times D}$$
$$\mathbf{u}_p = \operatorname{FC}(\operatorname{GAP}(Y')) \in \mathbb{R}^N$$

 $\triangleright$  Image representation: concatenated global and local features  $\mathbf{u}_c, \mathbf{u}_p$  mapped to N-dimensional space

 $\mathbf{u} = BN(FC(DROPOUT([\mathbf{u}_c;\mathbf{u}_p]))) \in \mathbb{R}^N$ 



# **Boosting vision transformers for image retrieval**

Chull Hwan Song<sup>1</sup>, Jooyoung Yoon<sup>1</sup>, Shunghyun Choi<sup>1</sup>, Yannnis Avrithis<sup>2,3</sup>

<sup>1</sup>Dealicious, INC <sup>2</sup>Institute of Advanced Research on Artificial Intelligence (IARAI) <sup>3</sup>Athena RC

# **DToP** architecture



### 

| State of the a             |                | COM   | pari             | ISONS            | 5             |        |                  |                  |                 |       |                  |                  |               |       |                    |                  |  |  |
|----------------------------|----------------|-------|------------------|------------------|---------------|--------|------------------|------------------|-----------------|-------|------------------|------------------|---------------|-------|--------------------|------------------|--|--|
|                            | Medium         |       |                  |                  |               |        |                  |                  |                 | HARD  |                  |                  |               |       |                    |                  |  |  |
| Method                     | $\mathcal{R}($ | Dxf   | $\mathcal{R}Oxf$ | $+\mathcal{R}1M$ | $\mathcal{R}$ | Par    | $\mathcal{R}Par$ | $+\mathcal{R}1M$ | $\mathcal{R}$ ( | Dxf   | $\mathcal{R}Oxf$ | $+\mathcal{R}1M$ | $\mathcal{R}$ | Par   | $\mathcal{R}Par$ - | $+\mathcal{R}1M$ |  |  |
|                            | mAP            | mP@10 | mAP              | mP@10            | mAP           | mP@10  | mAP              | mP@10            | mAP             | mP@10 | mAP              | mP@10            | mAP           | mP@10 | mAP                | mP@10            |  |  |
|                            |                |       |                  | Globa            | al De         | ESCRIP | TORS             | (SFM             | [-120]          | K)    |                  |                  |               |       |                    |                  |  |  |
| RMAC-R101 <sup>‡</sup>     | 53.5           | 76.9  |                  |                  | 68.3          | 97.7   |                  |                  | 25.5            | 42.0  |                  |                  | 42.4          | 83.6  |                    |                  |  |  |
| GeM-R101                   | 64.7           | 84.7  | 45.2             | 71.7             | 77.2          | 98.1   | 52.3             | 95.3             | 38.5            | 53.0  | 19.9             | 34.9             | 56.3          | 89.1  | 24.7               | 73.3             |  |  |
| AGeM-R101                  | 67.0           | —     | —                | —                | 78.1          | —      | _                | _                | 40.7            | _     | —                | —                | 57.3          | —     | —                  | —                |  |  |
| SOLAR-R101 <sup>†</sup>    | 52.5           | 73.6  | —                | —                | 70.9          | 98.1   | —                | _                | 27.1            | 41.4  | —                | —                | 46.7          | 83.6  | —                  | —                |  |  |
| GeM-R101 <sup>†</sup>      | 54.0           | 72.5  | —                | —                | 64.3          | 92.6   | —                | _                | 25.8            | 42.2  | —                | —                | 36.6          | 67.6  | —                  | —                |  |  |
| GLAM-R101 <sup>‡</sup>     | 66.2           | —     | _                | —                | 77.5          | —      | _                | _                | 39.5            | —     | —                | —                | 54.3          | —     | —                  |                  |  |  |
| DOLG-R101 <sup>†</sup>     | 46.4           | 66.8  | —                | —                | 56.6          | 91.1   | —                | _                | 18.1            | 27.9  | —                | —                | 26.6          | 62.6  | —                  | —                |  |  |
| IRT-DeiT-B                 | 55.1           | —     | —                | —                | 72.7          | —      | —                | _                | 28.3            | —     | —                | —                | 49.6          | —     | —                  | —                |  |  |
| DToP-R50+ViT-B             | 68.5           | 85.4  | 48.9             | 71.7             | 83.1          | 96.4   | 56.5             | 94.0             | 43.0            | 56.9  | 24.7             | 38.9             | 65.8          | 89.1  | 30.3               | 69.6             |  |  |
|                            |                |       | GI               | LOBAL            | DESC          | CRIPTO | DRS ( $0$        | GLDV             | 2-CLE           | AN)   |                  |                  |               |       |                    |                  |  |  |
| GeM-R101                   | 76.2           | _     | _                |                  | 87.3          | _      | _                |                  | 55.6            |       | _                |                  | 74.2          | _     |                    |                  |  |  |
| GLAM-R101                  | 78.6           | 88.2  | 68.0             | 82.4             | 88.5          | 97.0   | 73.5             | 94.9             | 60.2            | 72.9  | 43.5             | 62.1             | 76.8          | 93.4  | 53.1               | 84.0             |  |  |
| DELG-GeM-R50               | 73.6           | —     | 60.6             | —                | 85.7          | —      | 68.6             |                  | 51.0            | —     | 32.7             | —                | 71.5          | —     | 44.4               |                  |  |  |
| DELG-GeM-R101              | 76.3           | —     | 63.7             | —                | 86.6          | —      | 70.6             |                  | 55.6            | —     | 37.5             | —                | 72.4          | —     | 46.9               |                  |  |  |
| DOLG-R50                   | 80.5           | —     | 76.6             | —                | 89.8          | —      | 80.8             | _                | 58.8            | —     | 52.2             | —                | 77.7          | —     | 62.8               |                  |  |  |
| DOLG-R101                  | 81.5           | —     | 77.4             | —                | 91.0          | —      | 83.3             | _                | 61.1            | —     | 54.8             | —                | 80.3          | —     | 66.7               |                  |  |  |
| DOLG-R101 ∃                | 78.8           | 91.6  | 64.2             | 82.1             | 87.8          | 96.6   | 68.7             | 94.1             | 58.0            | 74.8  | 37.3             | 57.7             | 74.1          | 91.1  | 45.1               | 0.08             |  |  |
| DToP-R50+ViT-B             | 82.1           | 91.7  | 70.9             | 83.9             | 92.0          | 96.6   | 81.9             | 96.4             | 64.5            | 77.4  | 49.0             | 66.6             | 82.9          | 94.3  | 64.0               | 90.6             |  |  |
| DOLG-R101 ∃□               | 79.3           | 93.2  | 71.3             | 89.1             | 89.2          | 98.9   | 74.7             | 97.7             | 57.2            | 73.0  | 43.4             | 62.6             | 76.6          | 94.1  | 53.6               | 89.7             |  |  |
| $DT_{O}P-R50+ViT-B^{\Box}$ | 84.4           | 94.1  | 78.9             | 91.3             | 92.3          | 97.1   | 85.4             | 96.9             | 64.8            | 76.7  | 57.1             | 72.1             | 84.6          | 95.4  | 71.2               | 94.6             |  |  |



## Top-4 ranking and spatial attention



# Ablation study on SfM-120k

|                 |       |       |                  |                   |                  |                   | CNN GLOBA          | GLOBAL       | LOCAL        | ELM          | Oxf5k       | Par6k | MEDIUM           |                   | HARD |                   |
|-----------------|-------|-------|------------------|-------------------|------------------|-------------------|--------------------|--------------|--------------|--------------|-------------|-------|------------------|-------------------|------|-------------------|
|                 |       |       |                  |                   |                  |                   | STEM BRANCH BRANCH |              |              |              |             |       | $\mathcal{R}Oxf$ | $\mathcal{R}$ Par | ROxf | $\mathcal{R}$ Par |
|                 |       |       |                  |                   |                  |                   |                    |              |              |              | 77.7        | 85.9  | 52.6             | 76.0              | 26.6 | 52.0              |
| ΡΕ ΤΥΡΕ         | Oxf5k | Par6k | MEDIUM           |                   | TT .             |                   |                    | $\checkmark$ |              |              | 76.6        | 87.3  | 54.7             | 77.0              | 27.7 | 54.8              |
|                 |       |       |                  |                   | HA               | RD                |                    | $\checkmark$ | $\checkmark$ |              | 78.3        | 89.7  | 57.9             | 78.2              | 24.2 | 54.4              |
|                 |       |       | $\mathcal{R}Oxf$ | $\mathcal{R}$ Par | $\mathcal{R}Oxf$ | $\mathcal{R}$ Par |                    | $\checkmark$ | $\checkmark$ | $\checkmark$ | 81.5        | 89.8  | 61.4             | 79.7              | 32.5 | 57.4              |
| no PE           | 82.8  | 85.7  | 59.7             | 73.9              | 32.5             | 47.4              | $\checkmark$       |              |              |              | 81.2        | 86.4  | 55.5             | 76.2              | 31.4 | 52.1              |
| CPE [11]        | 85.9  | 88.8  | 62.6             | 77.9              | 37.1             | 58.2              | $\checkmark$       | $\checkmark$ |              |              | 88.3        | 91.9  | 66.6             | 83.6              | 41.9 | <b>67.8</b>       |
| DPE (bi-cubic)  | 87.6  | 91.0  | 65.2             | 82.2              | 38.3             | 64.6              | $\checkmark$       | $\checkmark$ | $\checkmark$ |              | <b>89.8</b> | 91.2  | 67.6             | 81.1              | 40.7 | 62.5              |
| DPE (bi-linear) | 89.7  | 92.7  | 68.5             | 83.1              | 43.0             | 65.8              | $\checkmark$       | $\checkmark$ | $\checkmark$ | $\checkmark$ | 89.7        | 92.7  | 68.5             | 83.1              | 43.0 | 65.8              |

map: position embedding



# Dynamic Position Embedding & Enhanced Locality Module