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MIXUP IMPROVES GENERALIZATION

• Data Augmentation technique that interpolates between pairs of exam-
ples (input/feature) and its labels.

• Flattens class representations, reduces overconfident incorrect predic-
tions and smoothens decision boundaries.

EMPIRICAL RISK MINIMIZATION TO MIXUP

• The expected risk is defined as an integral over the underlying contin-
uous data distribution.

• Since that distribution is unknown, the integral is approximated by a finite
sum, i.e., the empirical risk.

• A better approximation is the vicinal risk – augmented examples are
sampled from a distribution in the vicinity of each training example:
increasing the number of loss terms per training example.

• Input Mixup is inspired by vicinal risk, but for a mini-batch of size b, it
generates only b mixed examples and thus incur b loss term.

BETTER APPROXIMATION OF EXPECTED RISK INTEGRAL

Data augmentation should increase the data seen by the model. We
propose MultiMix, which:

• Increases the number n of generated mixed examples beyond the
mini-batch size b.

• Increases the number m of examples being interpolated from m = 2
(pairs) to m = b.

• Performs interpolation in the embedding space rather than input space.
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MULTIMIX

PRELIMINARIES

• For a mini-batch of b examples, X = (x1, . . . , xb) ∈ RD×b be the inputs,
Y = (y1, . . . , yb) ∈ Rc×b the targets; c is the total number of classes.

• fθ : X → Rd is an encoder that maps the input x to an embedding
z = fθ(x); d is the dimension of the embedding.

MIXUP

• Manifold mixup [1] interpolates the embeddings (Z) and targets (Y )
by forming a convex combination of the pairs with interpolation factor
λ ∈ [0, 1]:

Z̃ = Z(λI + (1− λ)Π) (1)

Ỹ = Y (λI + (1− λ)Π) (2)

λ ∼ Beta(α, α), I is the identity matrix, Π ∈ Rb×b is a permutation matrix.

• The number of generated examples per mini-batch is n = b, and each is
obtained by interpolating m = 2 examples.

• The total number of loss terms per mini-batch is again b.

MULTIMIX

• We draw interpolation vectors λk ∼ Dir(α) for k = 1, . . . , n.
Dir(α) is the symmetric Dirichlet distribution, λk ∈ ∆m−1 i.e. λk ≥ 0
and 1⊤

mλk = 1.

• We interpolate embeddings and targets by taking n convex combinations
over all m examples

Z̃ = ZΛ (3)

Ỹ = Y Λ, (4)

where Λ = (λ1, . . . , λn) ∈ Rb×n.

GENERALIZING MANIFOLD MIXUP

• from b to an arbitrary number n ≫ b of generated examples.

• from pairs (m = 2) to a tuple of length m = b, containing the entire
mini-batch.

• m-term convex combination vs. 2-term, Dirichlet vs. Beta distribution.

• from fixed λ across the mini-batch to a different λk for each generated
example.

DENSE MULTIMIX

PRELIMINARIES

• Each embedding zi = fθ(xi) = (z1i , . . . , z
r
i ) ∈ Rd×r for i = 1, . . . , b consists

of features zji ∈ Rd for spatial position j = 1, . . . , r.

• We group features by position in matrices Z1, . . . , Zr, where Zj =
(zj1, . . . , z

j
b) ∈ Rd×b for j = 1, . . . , r.

DENSE MULTIMIX

• Common way to increase the number of loss terms – Dense operations.

• Densely interpolate features at each spatial location: generate r inter-
polated features and nr > n per mini-batch.

USING ATTENTION AS PSEUDO-LABELS

• Attention map gives a level of confidence, selects reliable spatial loca-
tion to locate the target.

• Let ai = (a1i , . . . , a
r
i ) ∈ Rr be the attention map of embedding zi for

i = 1, . . . , b obtained using CAM.

• We group attention by position in vectors a1, . . . , ar, where aj =
(aj1, . . . , a

j
b) ∈ Rb for j = 1, . . . , r.

INTERPOLATION

• For each spatial position j = 1, . . . , r, we draw λj
k ∼ Dir(α) for k =

1, . . . , n and define Λj = (λj
1, . . . , λ

j
n) ∈ Rm×n.

• We re-weight Λ using attention and normalize it as:

M j = diag(aj)Λj (5)

M̂ j = M j diag(1⊤
mM

j)−1 (6)

• We interpolate embeddings and targets by taking n convex combinations
over m examples:

Z̃j = ZjM̂ j (7)

Ỹ j = Y M̂ j. (8)

EXPERIMENTAL RESULTS

OUT-OF-DISTRIBUTION DETECTION

DATASET LSUN (CROP) ISUN TI (CROP)

METRIC
AUROC AUPR AUPR AUROC AUPR AUPR AUROC AUPR AUPR

(ID) (OOD) (ID) (OOD) (ID) (OOD)

Baseline 47.1 54.5 45.6 72.3 74.5 69.2 64.8 67.8 60.6
Input mixup 59.3 61.4 55.2 63.0 60.2 63.4 62.8 63.0 62.1
Cutmix 63.1 61.9 63.4 76.3 81.0 77.7 84.3 87.1 80.6
Manifold mixup 60.3 57.8 59.5 73.1 80.7 76.0 69.9 69.3 70.5
AugMix 73.2 80.8 72.6 78.7 81.1 74.1 83.9 84.6 78.6
SaliencyMix 79.7 82.2 64.4 76.9 78.3 79.8 83.7 87.0 82.0
StyleMix 64.2 70.9 63.9 68.4 67.6 60.3 73.9 71.5 78.4
AlignMixup 79.9 84.1 75.1 83.2 84.1 80.3 85.0 87.8 85.0
ζ-Mixup 73.2 80.8 73.1 82.3 82.2 79.4 84.3 82.2 77.2

MultiMix (ours) 82.6 85.2 77.6 85.1 87.8 83.1 86.6 89.0 88.2
Dense MultiMix (ours) 84.3 85.9 78.0 85.4 88.0 84.6 89.0 90.8 88.0

Gain +4.4 +1.8 +2.9 +2.2 +3.9 +4.3 +4.0 +3.0 +3.2

Out-of-distribution detection using R-18. ID: In-distribution, OOD: Out-of-distribution. Evaluation metric - AuROC, AuPR
(ID) and AuPR (OOD): higher is better. underline: best baseline. Gain: increase in performance. TI: TinyImagenet.

ANALYSIS OF EMBEDDING SPACE

Baseline AlignMixup MultiMix (ours) Dense MultiMix (ours)

METRIC ALIGNMENT UNIFORMITY

Baseline 3.02 -1.94
AlignMixup [3] 2.04 -2.38

MulitMix (ours) 1.27 -4.77
Dense MultiMix (ours) 0.92 -5.68
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