Embedding Space Interpolation BeyondMini-Batch, Beyond Pairs and
Beyond Examples
Shashanka Venkataramanan ${ }^{1}$, Ewa Kijak ${ }^{1}$, Laurent Amsaleg ${ }^{1}$, and Yannis Avrithis ${ }^{2}$

Empirical Risk Minimization to Mixup - The expected risk is defined as an integral over the underlying continuous data distribution

- Since that distribution is unknown, the integral is approximated by a finite sum, i.e., the empirical risk
- A better approximation is the vicinal risk - augmented examples are sampled from a distribution in the vicinity of each training example. increasing the number of loss terms per training example.
Input Mixup is inspired by vicinal risk, but for a mini-batch of size b, it generates only b mixed examples and thus incur b loss term.
BETTER APPROXIMATION OF EXPECTED RISK INTEGRAL
Data augmentation should increase the data seen by the model. We propose Multillix, which
- Increases the number n of generated mixed examples beyond the mini-batch size b.
- Increases the number m of examples being interpolated from $m=2$ (pairs) to $m=b$
- Performs interpolation in the embedding space rather than input space.

${ }^{1}$ Inria, Univ Rennes, CNRS, IRISA; ${ }^{2}$ IARAI

Mutimix

Preliminaries

- For a mini-batch of b examples, $X=\left(x_{1}, \ldots, x_{b}\right) \in \mathbb{R}^{D \times b}$ be the inputs, $Y=\left(y_{1}, \ldots, y_{b}\right) \in \mathbb{R}^{c \times b}$ the targets; c is the total number of classes.
- $f_{\theta}: \mathcal{X} \rightarrow \mathbb{R}^{d}$ is an encoder that maps the input x to an embedding $z=f_{\theta}(x) ; d$ is the dimension of the embedding.
Mixup
- Manifold mixup [1] interpolates the embeddings (Z) and targets (Y) by forming a convex combination of the pairs with interpolation factor $\lambda \in[0,1]:$

$$
\begin{aligned}
& \tilde{Z}=Z(\lambda I+(1-\lambda) \Pi) \\
& \widetilde{Y}=Y(\lambda I+(1-\lambda) \Pi)
\end{aligned}
$$

$\lambda \sim \operatorname{Beta}(\alpha, \alpha), I$ is the identity matrix, $\Pi \in \mathbb{R}^{b \times b}$ is a permutation matrix. The number of generated examples per mini-batch is $n=b$, and each is obtained by interpolating $m=2$ examples.

- The total number of loss terms per mini-batch is again b.

Multimix

- We draw interpolation vectors $\lambda_{k} \sim \operatorname{Dir}(\alpha)$ for $k=1, \ldots, n$. $\operatorname{Dir}(\alpha)$ is the
and $1_{m}^{\top} \lambda_{k}=$
-We interpolate embeddings and targets by taking n convex combinations over all m examples

$$
\tilde{\tilde{Z}}=Z \Lambda
$$

where $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{b \times n}$.
Generalizing manifold mixup

- from b to an arbitrary number $n \gg b$ of generated examples.
- from pairs ($m=2$) to a tuple of length $m=b$, containing the entire mini-batch
m-term convex combination vs. 2-term, Dirichlet vs. Beta distribution. - from fixed λ across the mini-batch to a different λ_{k} for each generated example. over m examples:

Dense Multimix

Preliminaries

- Each embedding $\mathbf{z}_{i}=f_{\theta}\left(x_{i}\right)=\left(z_{i}^{1}, \ldots, z_{i}^{r}\right) \in \mathbb{R}^{d x r}$ for $i=1, \ldots, b$ consists
of features $z_{i}^{j} \in \mathbb{R}^{d}$ for spatial position $j=1, \ldots, r$.
- We group features by position in matrices

Dense Multimix

- Common way to increase the number of loss terms - Dense operations. - Densely interpolate features at each spatial location: generate r interpolated features and $n r>n$ per mini-batch.

Using attention as pseudo-labels

- Attention map gives a level of confidence, selects reliable spatial location to locate the target.
- Let $a_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{r}\right) \in \mathbb{R}^{r}$ be the attention map of embedding \mathbf{z}_{i} for ing CAN
- We group attention by position in vectors a^{1}, \ldots, a^{r}, where $a^{j}=$

interpolation

- For each spatial position $j=1, \ldots, r$, we draw $\lambda_{k}^{j} \sim \operatorname{Dir}(\alpha)$ for $k=$
$1, \ldots, n$ and define $\Lambda^{j}=\left(\lambda_{1}^{j}, \ldots, \lambda_{n}^{j}\right) \in \mathbb{R}^{m \times n}$
- We re-weight Λ using attention and normalize it as:

$$
\begin{align*}
& M^{j}=\operatorname{diag}\left(a^{j}\right) \Lambda^{j} \tag{5}\\
& \hat{M}^{j}=M^{j} \operatorname{diag}\left(\mathbf{1}_{m}^{\top} M^{j}\right)^{-1}
\end{align*}
$$

$$
\begin{aligned}
& \tilde{Z}_{j}^{j}=Z^{j} \hat{M}^{j} \\
& \tilde{v}^{j}
\end{aligned}
$$

EXPERIMENTAL RESULTS
Out-of-distribution Detection

$\begin{aligned} & \text { Dataset } \\ & \hline \text { Metric } \end{aligned}$	LSUN (crop)			ISUN			Tl((forop)		
	Auroc	${ }_{\text {Aupr }}^{\text {(1) }}$	${ }_{\text {Aupr }}^{\text {(000) }}$ \|	\%	$\begin{aligned} & \text { Aupr } \\ & \text { (i0) } \end{aligned}$	${ }_{\text {AUPR }}^{\text {(00) }}$	Auroc	$\begin{aligned} & \text { Aupr } \\ & \text { (i0) } \end{aligned}$	$\begin{aligned} & \text { AUPP } \\ & (000) \end{aligned}$
Baseline	${ }^{47.1}$	${ }^{54.5}$	${ }^{45.6}$	${ }^{72.3}$	${ }^{74.5}$	69.2	${ }^{64.8}$	${ }^{67.8}$	0.6
(lout mixip	${ }_{69.3}^{59.3}$	6.1.9	cis.2	${ }_{76.3}^{63.0}$	${ }_{8}^{60.2}$	${ }_{77}^{63.4}$	${ }_{84,}^{628}$	${ }_{8}^{63,0}$	${ }_{\text {cose }}^{62.1}$
Maniold mix	60.3	57.8	59.5	${ }^{73.1}$	80.7	76.0	69.9	693	70.5
AugMx	${ }_{79.7}^{73.2}$	${ }_{8}^{80.8}$	${ }_{\text {ck }}^{\substack{726 \\ 64.4}}$	78.7 76.9	${ }_{78.3}^{81.1}$	${ }_{79.1}^{74.1}$	${ }_{83.7}^{83.9}$	${ }^{84.6}$	82.0
	${ }_{64.2}^{79.7}$	82.2 70.9	${ }_{66.9}^{64.4}$	${ }_{68.4}^{76.9}$	${ }^{78.3} 6$	79.8 60.3		${ }^{87.5}$	${ }_{88.4}^{82.0}$
	${ }_{73,2}$	$\frac{84.1}{80.8}$	$\frac{75.1}{73.1}$	${ }_{823}^{83}$	${ }_{822}^{821}$	${ }^{80.3}$	${ }_{84,}^{85}$	$\frac{878}{82}$	${ }_{772}^{85}$
Mutilix ((ous)	82.6	${ }^{85} 2$	${ }^{77.6}$	${ }^{85.1}$	${ }^{87.8}$	${ }^{83.1}$	${ }^{86.6}$	${ }^{89.0}$	88.2
Dense MutiMx (ous)	84.3	85.9	78.0	85.4	88.0	84.6	89.0	90.8	88.0

 analvisis of Emeboding space

References
[1] Verma et al. Manifold mixup: Better representations by interpolating 2) hidden states ICML, 2019 .

2] Zhang et al. mixup: Beyond empirical risk minimization ICLR, 2018 .
B] Venkataramanan et al. AlignMixup: Improving Representations By InterVenkataramanan et al. AlignM1xup: Imp
polating Aligned Features CVPR, 2022 .

Acknowledgement

This work was partially supported by the ANR-19-CE23-0028 MEERQAT This work was partially supported by the ANR-19-CE23-0028 MEERQAT
and was performed using the HPC resources from GENCI-IDRIS Grant 2021 and was perform

