

MIXUP IMPROVES GENERALIZATION

- Data Augmentation technique that i between pairs of examples (input/feature) and its labels.
- Flattens class representations, reduces overconfident incorrect predicdecision boundaries. tions and

[1.0, 0.0]

[0.0, 1.0]

[0.7, 0.3] cat dog

EMPIRICAL RISK MINIMIZATION TO MIXUP

- The expected risk is defined as an integral over the underlying continuous data distribution.
- Since that distribution is unknown, the integral is approximated by a finite sum, i.e., the empirical risk.
- A better approximation is the vicinal risk augmented examples are sampled from a distribution in the vicinity of each training example: increasing the number of loss terms per training example.
- Input Mixup is inspired by vicinal risk, but for a mini-batch of size b, it generates only b mixed examples and thus incur b loss term.

Better Approximation of Expected RISK INTEGRAL

Data augmentation should increase the data seen by the model. We propose MultiMix, which:

- Increases the number n of generated mixed examples beyond the mini-batch size b.
- Increases the number m of examples being interpolated from m=2(pairs) to m = b.
- Performs interpolation in the embedding space e rather than input space.

(b) MultiMix (ours)

Embedding Space Interpolation Beyond Mini-Batch, Beyond Pairs and Beyond Examples

Shashanka Venkataramanan¹, Ewa Kijak¹, Laurent Amsaleg¹, and Yannis Avrithis² ¹Inria, Univ Rennes, CNRS, IRISA; ²IARAI

MULTIMIX

PRELIMINARIES

- For a mini-batch of b examples, $X = (x_1, \ldots, x_b) \in \mathbb{R}^{D \times b}$ be the inputs, $Y = (y_1, \ldots, y_b) \in \mathbb{R}^{c \times b}$ the targets; c is the total number of classes.
- f_{θ} : $\mathcal{X} \to \mathbb{R}^d$ is an encoder that maps the input x to an embedding $z = f_{\theta}(x)$; d is the dimension of the embedding.

MIXUP

• Manifold mixup [1] interpolates the embeddings (Z) and targets (Y) by forming a convex combination of the pairs with interpolation factor $\lambda \in [0,1]$:

$$\widetilde{Z} = Z(\lambda I + (1 - \lambda)\Pi)$$
(1)

$$\widetilde{Y} = Y(\lambda I + (1 - \lambda)\Pi)$$
(2)

 $\lambda \sim \text{Beta}(\alpha, \alpha)$, I is the identity matrix, $\Pi \in \mathbb{R}^{b \times b}$ is a permutation matrix.

- The number of generated examples per mini-batch is n = b, and each is obtained by interpolating m = 2 examples.
- The total number of loss terms per mini-batch is again b.

MultiMix

- We draw interpolation vectors $\lambda_k \sim Dir(\alpha)$ for $k = 1, \ldots, n$. $Dir(\alpha)$ is the symmetric Dirichlet distribution, $\lambda_k \in \Delta^{m-1}$ i.e. $\lambda_k \geq 0$ and $\mathbf{1}_{m}^{+}\lambda_{k}=1$.
- We interpolate embeddings and targets by taking n convex combinations over all *m* examples

$$\widetilde{Z} = Z\Lambda \tag{3}$$

$$\tilde{Z} = Y\Lambda,$$
 (4)

where $\Lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^{b \times n}$.

GENERALIZING MANIFOLD MIXUP

- from b to an arbitrary number r b of generated examples.
- , containing the entire • from pairs (m = 2) to a tuple of length mini-batch.
- t vs. Beta distribution. *m*-term convex combination vs. 2-term, I
- from fixed λ across the mini-batch to a different k for each generated example.

DENSE MULTIMIX

PRELIMINARIES

- Each embedding $\mathbf{z}_i = f_{\theta}(x_i) = (z_i^1, \dots, z_i^r) \in \mathbb{R}^{d \times r}$ for $i = 1, \dots, b$ consists of features $z_i^j \in \mathbb{R}^d$ for spatial position $j = 1, \ldots, r$.
- We group features by position in matrices Z^1, \ldots, Z^r , where $Z^j =$ $(z_1^j,\ldots,z_b^j) \in \mathbb{R}^{d \times b}$ for $j = 1,\ldots,r$.

DENSE MULTIMIX

- Common way to increase the number of loss terms Dense operations.
- Densely interpolate features at each spatial location: generate r es and nr > n per mini-batch. polated featur

USING ATTENTION AS PSEUDO-LABELS

- Attention map gives a level of confidence, selects reliable spatial location to locate the target.
- Let $a_i = (a_i^1, \ldots, a_i^r) \in \mathbb{R}^r$ be the attention map of embedding z_i for $i = 1, \ldots, b$ obtained using CAM.
- We group attention by position in vectors a^1, \ldots, a^r , where a^j = $(a_1^j,\ldots,a_b^j) \in \mathbb{R}^b$ for $j = 1,\ldots,r$.

INTERPOLATION

- For each spatial position $j = 1, \ldots, r$, we draw $\lambda_k^j \sim \text{Dir}(\alpha)$ for k =1,..., *n* and define $\Lambda^j = (\lambda_1^j, \ldots, \lambda_n^j) \in \mathbb{R}^{m \times n}$.
- We re-weight Λ using attention and normalize it as:

$$M^j = \operatorname{diag}(a^j)\Lambda^j \tag{5}$$

$$\hat{M}^j = M^j \operatorname{diag}(\mathbf{1}_m^\top M^j)^{-1}$$
(6)

• We interpolate embeddings and targets by taking n convex combinations over *m* examples:

$$\widetilde{Z}^j = Z^j \hat{M}^j \tag{7}$$

$$\widetilde{Y}^j = Y \hat{M}^j. \tag{8}$$

EXPERIMENTAL RESULTS

OUT-OF-DISTRIBUTION DETECTION

DATASET	LSUN (CROP)			ISUN			TI (CROP)		
Metric	AUROC	AuPR (ID)	AUPR (OOD)	AUROC	AuPR (ID)	AUPR (OOD)	AUROC	AuPR (ID)	AUPR (OOD)
Baseline	47.1	54.5	45.6	$\begin{array}{c} 72.3 \\ 63.0 \\ 76.3 \\ 73.1 \\ 78.7 \\ 76.9 \\ 68.4 \\ \underline{83.2} \\ 82.3 \end{array}$	74.5	69.2	64.8	67.8	60.6
Input mixup	59.3	61.4	55.2		60.2	63.4	62.8	63.0	62.1
Cutmix	63.1	61.9	63.4		81.0	77.7	84.3	87.1	80.6
Manifold mixup	60.3	57.8	59.5		80.7	76.0	69.9	69.3	70.5
AugMix	73.2	80.8	72.6		81.1	74.1	83.9	84.6	78.6
SaliencyMix	79.7	82.2	64.4		78.3	79.8	83.7	87.0	82.0
StyleMix	64.2	70.9	63.9		67.6	60.3	73.9	71.5	78.4
AlignMixup	79.9	<u>84.1</u>	75.1		<u>84.1</u>	<u>80.3</u>	<u>85.0</u>	<u>87.8</u>	85.0
C-Mixup	73.2	80.8	73.1		82.2	79.4	84.3	82.2	77.2
MultiMix (ours)	82.6	85.2	77.6	85.1	87.8	83.1	86.6	89.0	88.2
Dense MultiMix (ours)	84.3	85.9	78.0	85.4	88.0	84.6	89.0	90.8	88.0
Gain	+4.4	+1.8	+2.9	+2.2	+3.9	+4.3	+4.0	+3.0	+ 3.2

Out-of-distribution detection using R-18. ID: In-distribution, OOD: Out-of-distribution. Evaluation metric - AuROC, AuPF (ID) and AuPR (OOD): higher is better. underline: best baseline. Gain: increase in performance. TI: TinyImagenet.

ANALYSIS OF EMBEDDING SPACE

Baseline

IETRIC	Alignment	UNIFORMITY
aseline	3.02	-1.94
lignMixup [3]	2.04	-2.38
lulitMix (ours)	1.27	-4.77
ense MultiMix (ours)	0.92	-5.68

REFERENCES

- [1] Verma et al. Manifold mixup: Better representations by interpolating hidden states ICML, 2019.
- [2] Zhang et al. mixup: Beyond empirical risk minimization ICLR, 2018. 3 Venkataramanan et al. AlignMixup: Improving Representations By Interpolating Aligned Features CVPR, 2022.

ACKNOWLEDGEMENT

This work was partially supported by the ANR-19-CE23-0028 MEERQAT and was performed using the HPC resources from GENCI-IDRIS Grant 2021 AD011012528.