

# Adaptive manifold for imbalanced transductive few-shot learning



# Michalis Lazarou<sup>1</sup>, Yannnis Avrithis<sup>2</sup>, Tania Stathaki<sup>1</sup>

<sup>1</sup>Imperial College London <sup>2</sup>Institute of Advanced Research on Artificial Intelligence

### Background

- **Transductive few-shot learning:** Labeled support examples and unlabeled queries are all available at test time.
- Main lines of research include class centroid approaches and data manifold approaches.
- Transductive few-shot learning benchmarks use perfectly class-balanced tasks.

### Label propagation

- Construct k-nearest neighbour graph, and obtain its adjacency matrix  $\mathcal{W}$ .
- $\blacktriangleright$  Define the *label matrix* Y.
- Label propagation to obtain a class probability distribution for every query

 $Z := (I - \alpha \mathcal{W})^{-1} Y.$ 

# Ablation study

(2)

Table: Ablation study of algorithmic components of both balanced and imbalanced versions of our method AM on *minilmageNet*. NN<sub>k</sub>: k-nearest neighbour graph; otherwise, complete graph. C: learnable class centroids. G: learnable pairwise scaling factors G. B: learnable adjacency matrix B. PLC: feature pre-processing.

|                                                                          | IM                       | BALANCED                    |                                         |                                         |                                |                                |                                |  |
|--------------------------------------------------------------------------|--------------------------|-----------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|--------------------------------|--------------------------------|--|
| Components                                                               | ResNet-18                | WRN                         | WRN-28-10                               |                                         | ResNet-18                      |                                | WRN-28-10                      |  |
| $NN_k C G B PLC$                                                         | 1-shot 5-sh              | ot 1-shot                   | 5-shot                                  | 1-shot                                  | 5-shot                         | 1-shot                         | 5-shot                         |  |
|                                                                          | 60.21±0.27 74.24         | $\pm 0.21$ 63.34 $\pm 0.27$ | $76.19{\scriptstyle \pm 0.21}$          | $59.09{\scriptstyle \pm 0.21}$          | $71.54{\scriptstyle \pm 0.19}$ | $62.38{\scriptstyle\pm0.21}$   | $73.46{\scriptstyle\pm0.19}$   |  |
| $\checkmark$                                                             | $63.95_{\pm 0.27}$ 81.15 | $\pm 0.17$ 67.14 $\pm 0.27$ | $83.40{\scriptstyle\pm0.16}$            | $63.82{\scriptstyle\pm0.22}$            | $80.47{\scriptstyle \pm 0.15}$ | $67.22{\scriptstyle\pm0.21}$   | $82.58{\scriptstyle\pm0.16}$   |  |
| $\checkmark$ $\checkmark$                                                | 68.57±0.28 82.69         | $\pm 0.16$ 71.22 $\pm 0.26$ | $84.74{\scriptstyle\pm0.16}$            | $73.43{\scriptstyle \pm 0.23}$          | $84.37{\scriptstyle\pm0.14}$   | $75.94{\scriptstyle\pm0.22}$   | $86.55{\scriptstyle \pm 0.13}$ |  |
| $\checkmark$ $\checkmark$ $\checkmark$                                   | 70.16±0.29 82.62         | $\pm 0.17$ 72.89 $\pm 0.28$ | $84.89{\scriptstyle\pm0.16}$            | $75.59{\scriptstyle \pm 0.27}$          | $84.80{\scriptstyle \pm 0.15}$ | $78.72{\scriptstyle \pm 0.25}$ | $87.11{\scriptstyle \pm 0.13}$ |  |
| $\checkmark$ $\checkmark$ $\checkmark$                                   | $69.11_{\pm 0.29}$ 82.97 | $\pm 0.16$ 71.64 $\pm 0.28$ | $85.16{\scriptstyle \pm 0.15}$          | $74.85{\scriptstyle \pm 0.25}$          | $84.66{\scriptstyle \pm 0.14}$ | $77.70{\scriptstyle\pm0.23}$   | $86.91{\scriptstyle \pm 0.13}$ |  |
| $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$                      | $70.24 \pm 0.29  82.71$  | ±0.17 <b>73.22</b> ±0.29    | $85.00{\scriptstyle \pm 0.16}$          | $76.06{\scriptstyle \pm 0.28}$          | $84.82{\scriptstyle\pm0.15}$   | $79.37{\scriptstyle\pm0.26}$   | $87.12{\scriptstyle\pm0.13}$   |  |
| $\checkmark  \checkmark  \checkmark  \checkmark  \checkmark  \checkmark$ | 69.97±0.29 83.31         | $\pm 0.17$ 71.98 $\pm 0.29$ | $\textbf{85.66}{\scriptstyle \pm 0.15}$ | $\textbf{77.35}{\scriptstyle \pm 0.27}$ | $\textbf{85.47}_{\pm 0.14}$    | $80.99{\scriptstyle \pm 0.26}$ | $87.86{\scriptstyle\pm0.13}$   |  |

- **Problem:** Several methods exploit this bias by encouraging class-balanced predictions.
- We investigate the more realistic imbalanced transductive few-shot learning setting where the number of queries per class is different.
- **Contributions:** Propose a novel algorithm that combines the merits of both class centroid and data manifold approaches named (AM).
- New state of the art performance on the imbalanced transductive few-shot setting.
- On par or even outperform many state of the art methods in the standard balanced transductive few-shot setting.

### **Problem definition**

#### **Pre-training:**

We use publicly available pre-trained networks from



### Manifold Adaptation

Iteratively adapt the manifold centroids along with the manifold parameters 

| 3. Nearest<br>neighbour graph | 4. Label propagation | 5. Manifold optimisation |
|-------------------------------|----------------------|--------------------------|
|                               |                      | $\rightarrow$            |

#### State of the art comparisons

#### **Imbalanced transductive:**

Table: The results are reported from  $\alpha$ -TIM. Our reproduction of the imbalanced ProtoLP used the official code.

#### **Balanced transductive:**

Table: All results were reproduced using the official code provided by  $\alpha$ -TIM. †: Our reproduction using the official code of protoLP.

| Method                           | <i>mini</i> ImageNet <i>tiered</i> ImageNet |        |        |        | <i>mini</i> IM       | miniImageNet tieredImageNe |        |        |        |
|----------------------------------|---------------------------------------------|--------|--------|--------|----------------------|----------------------------|--------|--------|--------|
|                                  | 1-shot                                      | 5-shot | 1-shot | 5-shot | METHOD               | 1-shot                     | 5-shot | 1-shot | 5-shot |
| ResNet-18                        |                                             |        |        |        | ResNet-18            |                            |        |        |        |
| PT-MAP                           | 60.10                                       | 67.10  | 64.10  | 70.00  | LaplacianShc         | t 70.24                    | 82.10  | 77.28  | 86.22  |
| LaplacianShot                    | 65.40                                       | 81.60  | 72.30  | 85.70  | BD-CSPN              | 69.36                      | 82.06  | 76.36  | 86.18  |
| BD-CSPN                          | 67.00                                       | 80.20  | 74.10  | 84.80  | PT-MAP               | 76.88                      | 85.18  | 82.89  | 88.64  |
| ProtoLP                          | 65.42                                       | 78.48  | 71.12  | 82.51  | protoLP <sup>†</sup> | 76.96                      | 84.90  | 83.06  | 88.55  |
| TIM                              | 67.30                                       | 79.80  | 74.10  | 84.10  | TIM                  | 73.81                      | 84.91  | 80.13  | 88.61  |
| $\alpha$ -TIM                    | 67.40                                       | 82.50  | 74.40  | 86.60  | $TIM_{\mathrm{PLC}}$ | 69.33                      | 84.53  | 76.36  | 88.33  |
| $lpha	extsf{-TIM}_{	extsf{PLC}}$ | 63.38                                       | 82.80  | 70.17  | 86.82  | AM                   | 76.06                      | 84.82  | 82.42  | 88.61  |
| $\alpha$ -AM                     | 70.24                                       | 82.71  | 77.28  | 86.97  | $AM_{\mathrm{PLC}}$  | 77.35                      | 85.47  | 83.40  | 89.07  |
| $lpha	extsf{-}AM_{	extsf{PLC}}$  | 69.97                                       | 83.31  | 76.44  | 87.19  |                      |                            |        |        |        |

published works.

► Base class dataset:  $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^{I}$  where  $y_i \in C_{\text{base}}$ . ▶ Network  $f_{\theta} : \mathcal{X} \to \mathbb{R}^d$  is trained on  $D_{\text{base}}$ .

#### Inference stage

- ▶ Novel class dataset  $D_{\text{novel}}$  with  $C_{\text{novel}}$  disjoint from  $C_{\text{base}}$ . ► Assume access to  $f_{\theta}$ , a support set, S, a query set, Q.
- ► We focus on imbalanced transductive few-shot learning.

## Manifold Centroids

- $\blacktriangleright$  Embed all examples from S and Q into feature vectors and  $\ell_1$ -normalize them.
- Calculate the manifold class centroids using the labeled support vectors of every class. For class j the manifold centroid is:



Support set

| using either the     |            |                                 |                         |
|----------------------|------------|---------------------------------|-------------------------|
| balanced or          |            |                                 |                         |
| imbalanced loss      | ${\cal W}$ | $Z=Y(I-B\circ\mathcal{W})^{-1}$ | $L_{ m bal}/L_{ m imb}$ |
| function proposed by | 1          | 6. Iteration                    |                         |
| [1].                 |            |                                 |                         |

### Query set predictions

- Exploit the final Manifold to make predictions about the queries in the query set Q.
- Every query is classified to the class with the highest manifold similarity.

 $\hat{y}_i^q = \arg\max_i p_{ji}^q$ 



## Using more unlabeled examples

*Effect of number of unlabeled queries* M on  $\alpha$ -iLPC and  $\alpha$ -TIM using ResNet-18.







 $\triangleright \alpha$ -AM Exloits the data manifold through the k-nearest neighbour graph while  $\alpha$ -TIM works in Euclidean space.

[1] O. Veilleux, M. Boudiaf, P. Piantanida, and I. Ben Ayed. Realistic evaluation of transductive few-shot learning. Advances in Neural Information Processing Systems, 34:9290–9302, 2021.



Contact: michalis.lazarou14@imperial.ac.uk