

# Introduction

## Background

**Importance of Image Retrieval:** Crucial for applications like search engines, e-commerce, and digital libraries.

## **Problem Statement**

**Non-overlapping Training and Evaluation Sets:** Essential to prevent inflated performance metrics and ensure true generalization.

## Motivation

- **Dataset Issues:** Google Landmarks v2 (GLDv2) dataset has class overlaps with evaluation sets, compromising evaluation robustness.
- Complex Methods: Current methods involve complex two-stage processes, increasing computational overhead.

## Objective

- **RGLDv2-clean:** A new version of GLDv2, cleaned to remove class overlaps.
- **CiDeR**: An end-to-end, single-stage image retrieval pipeline that simplifies the process and requires no location supervision.
- **Nobust Evaluation:** Ensuring accurate performance evaluation by removing class overlaps and enhancing retrieval efficiency.

## **Contribution** 1

Data Cleaning Process

- Analysis of the Google Landmarks v2 dataset: Identify and analyze duplicated images.
- Removal of overlapping landmarks with Revisited Oxford and Paris datasets using metadata and visual similarity.
- Verification: Confirm that duplicates are removed accurately.



| EVAL              | #Eval Img | #dupl Eval | #dupl gldv2 GID | #dupl gldv2 Img |
|-------------------|-----------|------------|-----------------|-----------------|
| $\mathcal{R}$ Par | 70        | 36 (51%)   | 11              | 1,227           |
| $\mathcal{R}Oxf$  | 70        | 38 (54%)   | 6               | 315             |
| TEXT              |           |            | 1               | 23              |
| TOTAL             | 140       | 74         | 18              | 1,565           |
|                   |           |            |                 |                 |

Statistical information about duplicate images/categories with ( $\mathcal{R}Oxf$ ,  $\mathcal{R}$ Par) and GLDV2.

| TRAINING SET        | #IMAGES   | #CATEGORIES |
|---------------------|-----------|-------------|
| NC-clean            | 27,965    | 581         |
| SfM-120k            | 117,369   | 713         |
| GLDv2-clean         | 1,580,470 | 81,313      |
| RGLDv2-clean (ours) | 1,578,905 | 81,295      |

Statistics of clean landmark training sets for image retrieval.

Flowchart of the GLDv2-clean data cleaning process, including feature extraction, indexing, ranking, and verification steps.



Evaluation: *R*Oxford

Overlapping landmark images.

**On Train-Test Class Overlap and Detection for Image Retrieval** 

Chull Hwan Song<sup>1</sup>, Jooyoung Yoon<sup>1</sup>, Taebaek Hwang<sup>1</sup>, Shunghyun Choi<sup>1</sup>, Yeong Hyeon Gu<sup>2\*</sup>, Yannis Avrithis<sup>3</sup>

<sup>1</sup>Dealicious Inc. <sup>2</sup>Sejong University <sup>3</sup>Institute of Advanced Research on Artificial Intelligence (IARAI)









Top-5 retrieved images with spatial attention maps.

Evaluation: *R*Paris



Top-3

|                           | BASE |       |               | MED   | DIUM              |       |      | HA    |                   | -     |      |       |
|---------------------------|------|-------|---------------|-------|-------------------|-------|------|-------|-------------------|-------|------|-------|
| TRAIN SET                 | Ox5k | Par6k | $\mathcal{R}$ | Oxf   | $\mathcal{R}$ Par |       | ROxf |       | $\mathcal{R}$ Par |       | MEAN | DIFF  |
|                           | mAP  | mAP   | mAP           | mP@10 | mAP               | mP@10 | mAP  | mP@10 | mAP               | mP@10 |      |       |
| GLDv2-clean               | 91.9 | 94.5  | 72.8          | 86.7  | 84.2              | 95.9  | 49.9 | 62.1  | 69.7              | 88.4  | 79.5 | -5.4  |
| $\mathcal{R}GLDv2$ -clean | 86.1 | 93.9  | 64.5          | 81.0  | 84.1              | 95.4  | 35.6 | 51.5  | 68.7              | 86.4  | 74.1 |       |
| GLDv2-clean               | _    | _     | 79.7          | _     | 88.6              | _     | 60.0 | _     | 75.3              | _     | 75.9 | -8    |
| $\mathcal{R}GLDv2$ -clean | 90.6 | 94.4  | 70.8          | 84.6  | 84.1              | 95.4  | 48.0 | 62.3  | 68.7              | 86.4  | 67.9 |       |
| GLDv2-clean               | 94.2 | 95.6  | 78.6          | 88.2  | 88.5              | 97.0  | 60.2 | 72.9  | 76.8              | 93.4  | 83.4 | -4.1  |
| $\mathcal{R}GLDv2$ -clean | 90.9 | 94.1  | 72.2          | 84.7  | 83.0              | 95.0  | 49.6 | 61.6  | 65.6              | 87.6  | 79.3 |       |
| GLDv2-clean               | _    | _     | 78.8          | _     | 87.8              | _     | 58.0 | _     | 74.1              | _     | 74.7 | -7.4  |
| $\mathcal{R}GLDv2$ -clean | 88.3 | 93.9  | 70.8          | 85.3  | 83.2              | 95.4  | 47.4 | 60.0  | 67.9              | 87.4  | 67.3 |       |
| GLDv2-clean               | _    | _     | 82.3          | _     | 75.6              | _     | 66.6 | _     | 78.6              | _     | 75.8 | -18.2 |
| $\mathcal{R}GLDv2$ -clean | 84.3 | 90.0  | 61.4          | 76.4  | 75.8              | 94.0  | 36.9 | 55.2  | 54.4              | 81.0  | 57.6 |       |

**ATHENA** Research & Innovation Information Technologies

|                       | TRAIN SET        | Net   | POOLING | Loss         | FT           | E2E          | Self         | Dim  | BASE        |             | $\mathcal{R}M$ edium |                   | ${\cal R}$ Hard  |              | MEAN        |
|-----------------------|------------------|-------|---------|--------------|--------------|--------------|--------------|------|-------------|-------------|----------------------|-------------------|------------------|--------------|-------------|
|                       |                  |       |         |              |              |              |              |      | Oxf5k       | Par6k       | $\mathcal{R}Oxf$     | $\mathcal{R}$ Par | $\mathcal{R}Oxf$ | <b>R</b> Par |             |
| LOCAL DESCRIPTORS     |                  |       |         |              |              |              |              |      |             |             |                      |                   |                  |              |             |
| 1]                    | SfM-120k         | R50   | _       | _            | $\checkmark$ | _            | _            | -    | _           | _           | 60.6                 | 61.4              | 36.7             | 35.0         | _           |
|                       | SfM-120k         | R50   | _       | CLS          | ✓            | _            | _            | -    | —           | _           | 67.8                 | 76.9              | 43.1             | 55.4         | _           |
| LOCAL DESCRIPTORS+D2R |                  |       |         |              |              |              |              |      |             |             |                      |                   |                  |              |             |
|                       | NC-clean         | R50   | _       | CLS,LOCAL    | $\checkmark$ |              |              | _    | _           | _           | 69.9                 | <b>78.</b> 7      | 45.6             | 57.7         | _           |
|                       | NC-clean         | R50   | _       | CLS,LOCAL    | $\checkmark$ |              |              | -    | —           | _           | 71.9                 | 78.0              | 48.5             | 54.0         | _           |
| GLOBAL DESCRIPTORS    |                  |       |         |              |              |              |              |      |             |             |                      |                   |                  |              |             |
|                       | SfM-120k         | R101  | RMAC    | TP           | $\checkmark$ | _            | _            | 2048 | 79.0        | 86.3        | 53.5                 | 68.3              | 25.5             | 42.4         | 59.2        |
|                       | SfM-120k         | R101  | GeM     | SIA          |              | _            | _            | 2048 | 87.8        | <b>92.7</b> | 64.7                 | 77.2              | 38.5             | 56.3         | 69.5        |
|                       | SfM-120k         | R101  | GeM     | SIA          |              | _            | _            | 2048 | —           | _           | 67.0                 | <b>78.1</b>       | <b>40.7</b>      | 57.3         | _           |
|                       | SfM-120k         | R101  | GeM     | TP,SOS       | $\checkmark$ | _            | _            | 2048 | 78.5        | 86.3        | 52.5                 | 70.9              | 27.1             | 46.7         | 60.3        |
|                       | SfM-120k         | R101  | GeM     | AF           |              | -            | -            | 512  | <b>89.7</b> | 91.1        | 66.2                 | 77.5              | 39.5             | 54.3         | <b>69.7</b> |
|                       | SfM-120k         | R101  | GeM,GAP | AF           |              | —            | —            | 512  | 72.8        | 74.5        | 46.4                 | 56.6              | 18.1             | 26.6         | 49.2        |
|                       |                  |       | GLOE    | BAL DESCRIPT | ORS          | +D2R         |              |      |             |             |                      |                   |                  |              |             |
|                       | [O]              | R101  | FC      | CLS          |              |              |              | 4096 | 38.4        | _           | _                    | _                 | _                | _            | _           |
|                       | Pascal VOC       | V16   | GSP     | CLS,LOCAL    |              | $\checkmark$ |              | 512  | 67.9        | 72.9        | _                    | _                 | _                | _            | _           |
| (                     | OpenImageV4 [17] | R50   | MAC     | MSE          |              | $\checkmark$ |              | 2048 | 50.2        | 65.2        | _                    | _                 | _                | _            | —           |
|                       | Oxford,Paris     | A,V16 | CroW    | CLS,LOCAL    |              |              |              | 768  | 80.1        | 90.3        | _                    | _                 | _                | —            | —           |
|                       | NC-clean         | R101  | RMAC    | TP           | $\checkmark$ |              |              | 2048 | 85.2        | 94.0        | _                    | _                 | _                | -            | -           |
|                       | SfM-120k         | R101  | GeM     | AF           |              | $\checkmark$ | $\checkmark$ | 2048 | 89.9        | 92.0        | 67.3                 | 79.4              | 42.4             | 57.5         | 71.4        |
|                       | SfM-120k         | R101  | GeM     | AF           | $\checkmark$ | $\checkmark$ | $\checkmark$ | 2048 | <b>92.6</b> | <b>95.1</b> | 76.2                 | 84.5              | <b>58.9</b>      | <b>68.9</b>  | <b>79.4</b> |

Performance Comparison of State-of-the-Art Methods on Existing Clean Datasets.

| BA                            | SE          |                    |       |      | Med                   | IUM            |                  |                   |                  | HARD               |       |                  |                       |              |       |                   |                  |  |
|-------------------------------|-------------|--------------------|-------|------|-----------------------|----------------|------------------|-------------------|------------------|--------------------|-------|------------------|-----------------------|--------------|-------|-------------------|------------------|--|
| )x5k                          | Par6k       | $\mid \mathcal{R}$ | Oxf   | ROx  | $f + \mathcal{R} 1 M$ | ${\mathcal R}$ | Par              | $\mathcal{R}$ Par | $+\mathcal{R}1M$ | $\mid \mathcal{R}$ | Oxf   | $\mathcal{R}Oxt$ | $f + \mathcal{R} 1 M$ | $\mathcal R$ | Par   | $\mathcal{R}$ Par | $+\mathcal{R}1M$ |  |
| mAP                           | mAP         | mAP                | mP@10 | mAP  | mP@10                 | mAP            | mP@10            | mAP               | mP@10            | mAP                | mP@10 | mAP              | mP@10                 | mAP          | mP@10 | mAP               | mP@10            |  |
| GLOBAL DESCRIPTORS (SFM-120K) |             |                    |       |      |                       |                |                  |                   |                  |                    |       |                  |                       |              |       |                   |                  |  |
| 79.0                          | 86.3        | 53.5               | 76.9  | _    | _                     | 68.3           | 97.7             | _                 | _                | 25.5               | 42.0  | _                | _                     | 42.4         | 83.6  | _                 | _                |  |
| 87.8                          | 92.7        | 64.7               | 84.7  | 45.2 | 71.7                  | 77.2           | <b>98.1</b>      | 52.3              | 95.3             | 38.5               | 53.0  | 19.9             | 34.9                  | 56.3         | 89.1  | 24.7              | 73.3             |  |
| _                             | —           | 67.0               | _     | —    | —                     | 78.1           | —                | _                 | _                | 40.7               | —     | —                | —                     | 57.3         | —     | —                 | —                |  |
| 78.5                          | 86.3        | 52.5               | 73.6  | —    | —                     | 70.9           | 98.1             | —                 | —                | 27.1               | 41.4  | —                | —                     | 46.7         | 83.6  | —                 | —                |  |
| 79.0                          | 82.6        | 54.0               | 72.5  | —    | —                     | 64.3           | 92.6             | —                 | —                | 25.8               | 42.2  | —                | _                     | 36.6         | 67.6  | —                 | —                |  |
| <b>89.7</b>                   | 91.1        | 66.2               | —     | —    | —                     | 77.5           | —                | —                 | —                | 39.5               | —     | —                | _                     | 54.3         | —     | —                 | —                |  |
| 72.8                          | 74.5        | 46.4               | 66.8  | _    | _                     | 56.6           | 91.1             | —                 | _                | 18.1               | 27.9  | —                | _                     | 26.6         | 62.6  | —                 | -                |  |
| <b>89.9</b>                   | 92.0        | 67.3               | 85.1  | 50.3 | 75.5                  | 79.4           | 97.9             | 51.4              | <b>95.7</b>      | 42.4               | 56.4  | 22.4             | 35.9                  | 57.5         | 87.1  | 22.4              | 69.4             |  |
| 92.6                          | 95.1        | <b>76.2</b>        | 87.3  | 60.5 | <b>78.6</b>           | 84.5           | 98.0             | 56.9              | <b>95.9</b>      | 58.9               | 71.1  | 36.8             | 55.7                  | <b>68.9</b>  | 91.3  | 30.1              | 73.9             |  |
|                               |             |                    |       | GLOB | AL DESC               | RIPTC          | DRS ( ${\cal R}$ | GLD               | /2-CLEA          | N)                 |       |                  |                       |              |       |                   |                  |  |
| 86.1                          | 93.9        | 64.5               | 81.0  | 51.3 | 72.1                  | 84.1           | 95.4             | 54.2              | 90.3             | 35.6               | 51.5  | 22.2             | 42.9                  | 68.7         | 86.4  | 27.4              | 66.9             |  |
| 90.6                          | 94.4        | 70.8               | 84.6  | 55.8 | 76.1                  | 80.3           | 94.6             | 57.6              | 92.0             | 48.0               | 62.3  | 30.3             | 45.3                  | 61.8         | 83.9  | 30.7              | 71.6             |  |
| 90.9                          | 94.1        | 72.2               | 84.7  | 58.6 | 76.1                  | 83.0           | 95.0             | 58.6              | 91.7             | 49.6               | 61.6  | 34.1             | 50.9                  | 65.6         | 87.6  | 33.3              | 72.1             |  |
| 38.3                          | 93.9        | 70.8               | 85.3  | 57.3 | <b>76.8</b>           | 83.2           | 95.4             | 57.3              | 92.0             | 47.4               | 60.0  | 29.5             | 46.2                  | 67.9         | 87.4  | 32.7              | 72.4             |  |
| 81.2                          | 89.6        | 60.8               | 77.7  | 44.0 | 60.9                  | 75.8           | 94.3             | 44.1              | 86.9             | 37.3               | 54.1  | 23.2             | 37.7                  | 54.8         | 81.3  | 19.7              | 54.4             |  |
| 39.8                          | 94.6        | 73.7               | 85.5  | 58.6 | 76.3                  | 84.6           | <b>96.7</b>      | 59.0              | 95.1             | 54.9               | 66.6  | 34.6             | 54.7                  | 68.5         | 89.1  | 33.5              | 76.9             |  |
| 90.9                          | <b>96.1</b> | <b>77.8</b>        | 88.0  | 61.8 | <b>78.0</b>           | <b>87.4</b>    | <b>97.0</b>      | 61.6              | 94.3             | 61.9               | 70.4  | <b>39.4</b>      | <b>56.8</b>           | 75.3         | 90.0  | 35.8              | 72.7             |  |
|                               |             |                    |       |      |                       |                |                  |                   |                  |                    |       |                  |                       |              |       |                   |                  |  |

Emphasize the critical nature of non-overlapping training and evaluation sets.

Summary of CiDeR's advantages and performance improvements.