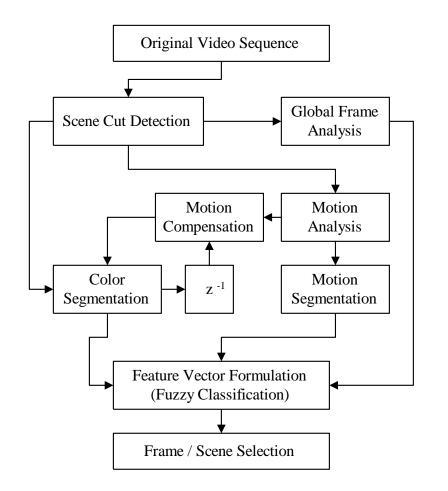


National Technical University of Athens Department of Electrical and Computer Engineering

# **Efficient Content Representation in MPEG Video Databases**

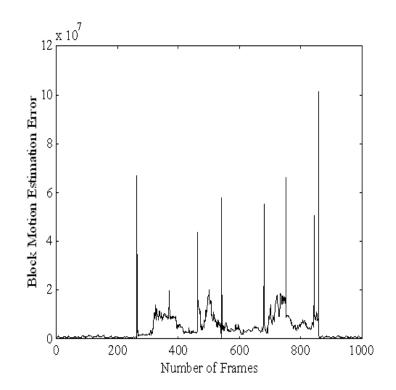
Yannis Avrithis, Nikolaos Doulamis, Anastasios Doulamis and Stefanos Kollias


# Objective

- Automatic selection of a limited number of *key frames and scenes* from MPEG video streams
- Key frames and scenes provide sufficient information about the content of video sequences
- Representation of video sequences by multidimensional *feature vectors* of key frames and scenes, containing color & motion information
- *Video queries* applied directly on feature vectors of key frames and scenes

## Applications

- *Multimedia database management:* reduction of storage requirements for search capabilities, direct content-based retrieval, faster and more efficient video queries, improvement of user interface
- *Multimedia interactive services:* production of low resolution video clip previews (trailers) or still image mosaics, browsing of video databases on web pages


## Proposed System Architecture

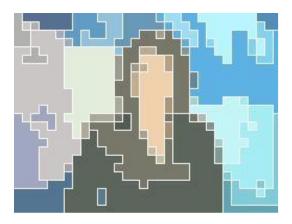


- Scene cut detection
- Feature extraction for each frame
- Formulation of scene feature vectors
- Selection of the most representative scenes
- Extraction of key frames for each scene

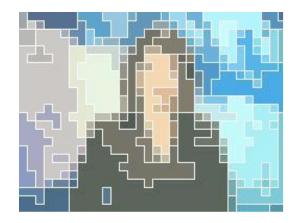
#### Scene Cut Detection

- Computation of the sum of the block motion estimation error
- Selection of frames for which sum exceeds a certain threshold
- Computations applied directly to MPEG-coded sequences

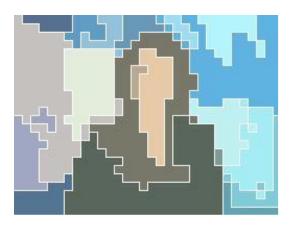



## **Color Segmentation**

- Segmentation according to *spatial homogeneity*
- *Block resolution* (reduction of computational time, exploitation of MPEG information)
- *Hierarchical merging* of similar segments (depending on color homogeneity & segment size)
- *Color features*: number of segments, location, size & mean color of each segment
- *Object tracking:* comparison with motion compensated segmentation results of previous frames (connected regions are encouraged to remain connected in successive frames)

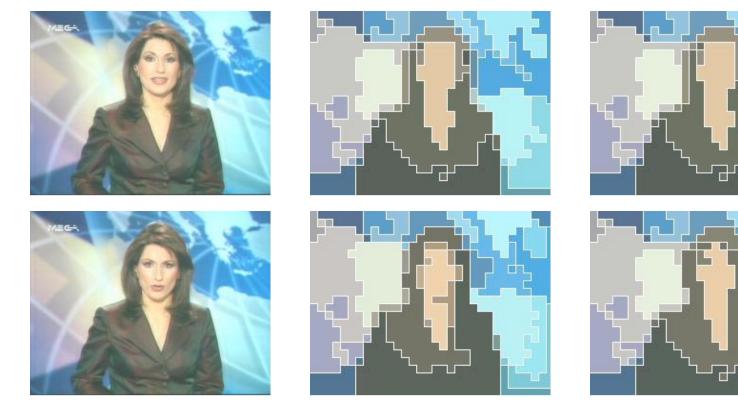

## **Color Segmentation Results**




#### Original frame



3rd iteration




#### 1st iteration

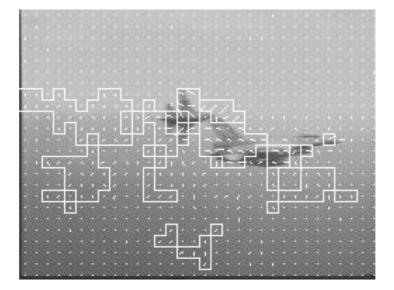


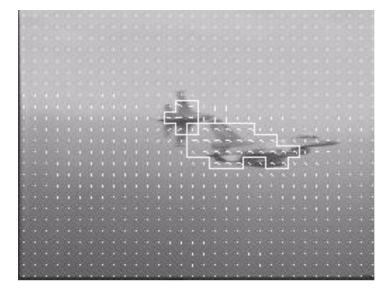
**Final Result** 

## **Object Tracking Capabilities**



Two original successive frames

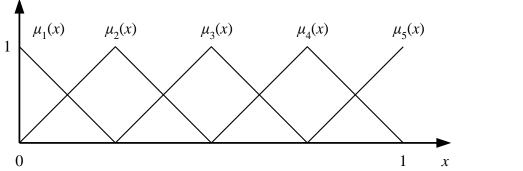

Segmentation without tracking


Segmentation with tracking

## Motion Segmentation

- Segmentation according to *spatial homogeneity*
- *Block resolution* (reduction of computational time)
- Motion vectors derived from motion analysis, or directly from MPEG stream
- *Median filtering* of derived motion vectors: elimination of "noise", preservation of "edges"
- *Motion features*: number of segments, location, size & mean motion vector of each segment

### Motion Segmentation Results






Motion segmentation without filtering Motion segmentation with filtering

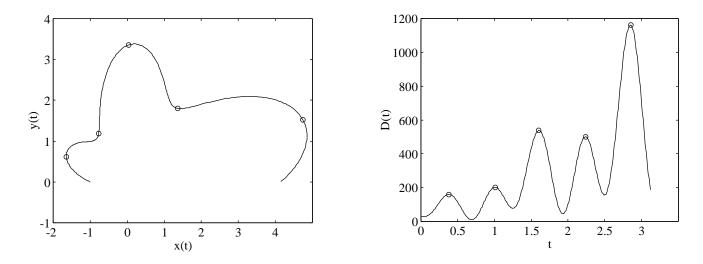
## Feature Vector Formulation

- *Multidimensional "histogram"*: classification of color and motion segments into pre-determined classes
- *Fuzzy classification:* normalization of each feature *x* to [0,1], and partitioning into *Q* classes defined by membership functions  $\mu_n(x) \in [0,1], n = 1,...,Q$



• Histogram construction possible even with small number of samples *x*.

# Multidimensional Fuzzy Classification


- Degree of membership allocated to each class  $F(n_1,...,n_L) = \sum_{i=1}^{K} \left\{ \prod_{j=1}^{L} \mu_{n_j}(f_j^{(i)}) \right\}$ where  $n_j \in \{1,2,...,Q\}$ : classification index for *j*th feature, *Q*: no. of partitions, *L*: no. of features, *K*: no. of segments,  $f_j^{(i)}$ : *j*th feature of *i*th segment,  $\mu_n(f)$ : degree of membership of feature *f* in partition *n*
- Feature vector formed by degrees of membership for all *M*=*Q<sup>L</sup>* combinations of *n*<sub>1</sub>,...,*n<sub>L</sub>* ∈ {1,2,...,*Q*}
- *Global frame characteristics* included in feature vector (color histogram, etc.)

## Representative Scene Selection

- *Scene feature vector* constructed based on frame feature vectors over duration of scene
- *Clustering* of similar scene feature vectors  $\mathbf{s}_i \in \Re^M$ ,  $i=1,...,N_S$  and selection of cluster *representatives*  $\mathbf{c}_i, i=1,...,K_S$
- Average distortion  $D(\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_{K_s}) = \sum_{i=1}^{K_s} \sum_{\mathbf{s} \in Z_i} d(\mathbf{s}, \mathbf{c}_i)$ should be minimized, where  $Z_i = \{\mathbf{s} \in S : d(\mathbf{s}, \mathbf{c}_i) < d(\mathbf{s}, \mathbf{c}_j) \forall j \neq i\}$ is the *influence zone* of  $\mathbf{c}_i$
- Minimization performed with *generalized Lloyd* or *K*-means algorithm

## **Key Frame Selection**

- Selection of frames whose feature vector resides in extreme locations of feature vector trajectory **r**(*t*)
- Magnitude of 2<sup>nd</sup> derivative  $D(t)=|d^2\mathbf{r}(t)/dt^2|$  used as *curvature measure*



• Extremely fast, easy to implement in hardware

# **Optimization Methods for Frame Selection**

- Minimization of a *correlation criterion* (key frames should not be similar to each other)
- Correlation measure of feature vectors  $\mathbf{f}_i$ ,  $i = x_1, \dots, x_{K_F}$  $R(\mathbf{x}) = R(x_1, \dots, x_{K_F}) = \left(\sum_{i=1}^{K_F} \sum_{j=i+1}^{K_F} (\rho_{x_i, x_j})^2\right)^{1/2}$

where  $\rho_{ij}$ : correlation coefficient of vectors  $f_i, f_j$ and  $\mathbf{x} = (x_1, \dots, x_{K_F})$ : index vector corresponding to a set of selected frame numbers

Minimization of R(x) w.r.t. x implemented by *logarithmic search* or *genetic algorithm* (exhaustive search is unfeasible)

# Video Queries

- Searching and retrieval of frames based on comparisons in the feature space
- Feature space contains all essential information, while preserving a very low dimension
- Comparisons performed on key frames only
- Dramatic reduction achieved in number of frames required for indexing, browsing or retrieval
- *Adaptive video queries* possible with parametric (weighted) distance function between feature vectors and parameter adaptation according to user requirements

#### Scene Selection Results



#### 8 scenes of a test video sequence



3 scenes selected as most representative

### Key frame selection results













#### 6 key frames from the 2nd representative scene

## Conclusions

- *Automatic extraction* of key frames and scenes of video sequences taken from large video databases
- *Optimal selection* of representative scenes
- *Object tracking* provides smoother feature vector trajectories and more robust frame selection
- *Direct implementation* on MPEG video streams
- *Feature vector space* enables robust and efficient frame comparisons, suitable for *video queries*

## Further Work

- Integration of color and motion segmentation results
- More robust object tracking
- Optimal frame selection mechanisms
- More intelligent object extraction (e.g., human faces)
- Interweaving of audio and video information
- Adaptive video queries