Image Retrieval and Classification Using Affine Invariant B-Spline Representation and Neural Networks

Yiannis Xirouhakis, Yannis Avrithis and Stefanos Kollias

National Technical University of Athens Department of Electrical and Computer Engineering

Problem Statement

- Content-based image retrieval from video databases based on object shape (contour)
- Extraction of key-frames that provide sufficient information about video content
- Extraction of video objects based on color and motion segmentation and tracking
- Affine-invariant *B-spline representation* of object contours
- Supervised classification of video objects into prototype object classes using *neural network*

Applications

- Direct content-based retrieval based on object shape apart from other features (color, texture, motion etc.)
- High level of abstraction in the representation of video sequences using higher level classes as combinations of primary object classes
- Multimedia database management
- Reduction of storage requirements for search capabilities
- □ Faster and more efficient *video queries*

Assumptions / Constraints

- High resolution images / video available
- Main mobile objects existing in foreground for good performance of motion segmentation algorithms
- Images of relatively simple background for good performance of color segmentation
- Relatively planar objects in foreground to ensure contour similarity for similar objects

Video Processing

Scene cut detection

- Feature extraction for each frame
- Formulation of scene feature vectors
- Selection of the most representative scenes
- Extraction of key frames for each scene

Scene Cut Detection

- Computation of the sum of the block motion estimation error
- Selection of frames for which sum exceeds a certain threshold
- Computations applied directly to MPEG coded sequences

Color Segmentation

- Segmentation according to spatial homogeneity
- Block resolution (reduction of computational time, exploitation of MPEG information)
- Hierarchical merging of similar segments (w.r.t. color homogeneity & segment size)
- Color features: number of segments, location, size & mean color of each segment
- Object tracking: connected regions encouraged to remain connected in successive frames

Color Segmentation Results

First stage of segmentation

Two original frames

Motion Segmentation

- Segmentation according to spatial homogeneity
- Block resolution (reduction of computational time)
- Motion vectors derived from motion analysis, or directly from MPEG stream
- Median filtering of derived motion vectors: elimination of "noise", preservation of "edges"
- Motion features: number of segments, location, size & mean motion vector of each segment

Motion Segmentation Results

Motion segmentation without smoothing

Motion segmentation with smoothing

Scene Selection Mechanism

- *Scene feature vector* constructed based on frame feature vectors over duration of scene
 Clustering of similar scene feature vectors s_i∈ ℜ^M, i=1,...,N_S and selection of cluster representatives c_i, i=1,...,K_S
 Average *distortion* D(c₁, c₂,...,c_{K_S}) = ∑_{i=1} ∑_{s∈Z_i} d(s, c_i) is minimized w.r.t. c_i, i=1,...,K_S
- Generalized Lloyd or K-means algorithm used as an optimization method

Key Frame Selection Mechanism

Minimization of a *correlation criterion*: key frames should not be similar to each other
 Correlation measure

$$R(\mathbf{x}) = R(x_1, \dots, x_{K_F}) = \left(\sum_{i=1}^{K_F - 1} \sum_{j=i+1}^{K_F} (\rho_{x_i, x_j})^2\right)^{1/2}$$

of feature vectors \mathbf{f}_i , $i = x_1, \dots, x_{K_F}$ is minimized w.r.t. index vector $\mathbf{x} = (x_1, \dots, x_{K_F})$

corresponding to a set of selected frames

Exhaustive search is unfeasible: minimization implemented by *logarithmic search algorithm*

Estimation of Curve Parameters

- Curve modeling using *cubic B-splines*
- Curve matching using *control* and *knot-points* for modeled curves
- Curve matching using *Fourier descriptors*
- Affine-invariant curve description and matching using curve moments

Curve Modeling using B-Splines (1)

- □ A dense set of *m* data curve points s_j , j = 0, ..., m-1 is given
- Input curve is modeled using closed cubic Bsplines consisting of n+1 connected curve segments ri, i = 0,1,..,n
- Each segment is a linear combination of four cubic polynomials in the parameter $t \in [0,1]$:

$$\mathbf{r}_{i}(t) = \mathbf{C}_{i-1}Q_{0}(t) + \mathbf{C}_{i}Q_{1}(t) + \mathbf{C}_{i+1}Q_{2}(t) + \mathbf{C}_{i+2}Q_{3}(t)$$

where $Q_k(t) = a_{k0}t^3 + a_{k1}t^2 + a_{k2}t + a_{k3}$, k = 0,1,2,3

Basis functions Qk (t) are determined using
 continuity constraints in position, slope and curvature
 the invariance property to coordinate transformations
 Modeled B-spline curve is given by

$$\mathbf{r}(t') = \sum_{k=0}^{n} \mathbf{r}_{i}(t'-i) = \sum_{k=0}^{n} \mathbf{C}_{i \mod(n+1)} N_{i}(t')$$
where $0 \le t' \le n-2$,
and N_i(t) denote the $N_{i}(t') = \begin{cases} Q_{3}(t'-i+3) & i-3 \le t' < i-2 \\ Q_{2}(t'-i+2) & i-2 \le t' < i-1 \\ Q_{1}(t'-i+1) & i-1 \le t' < i \\ Q_{0}(t'-i) & i \le t' < i+1 \\ 0 & otherwise \end{cases}$

Curve Modeling using B-Splines (3)

Control points are determined, such that the error between the observed data and the Bspline curve $d^2 = \sum_{j=1}^{m} \left\| \mathbf{s}_j - \mathbf{r}(t'_j) \right\|^2$ is minimized **I** For appropriate parametric values of t', MMSE solution for the control points is given as $\mathbf{C}_{f} = (\mathbf{P}^{T}\mathbf{P})^{-1}\mathbf{P}^{T}\mathbf{f}$ where $\mathbf{f} = [\mathbf{x}, \mathbf{y}]$ and $\mathbf{P} = \begin{bmatrix} N_0(t_1') + N_{n+1}(t_1') & N_1(t_1') + N_{n+2}(t_1') & N_2(t_1') + N_{n+3}(t_1') & N_3(t_1') & \cdots & N_n(t_1') \\ N_0(t_2') + N_{n+1}(t_2') & N_1(t_2') + N_{n+2}(t_2') & N_2(t_2') + N_{n+3}(t_2') & N_3(t_2') & \cdots & N_n(t_2') \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$ $\left| N_{0}(t'_{m}) + N_{n+1}(t'_{m}) - N_{1}(t'_{m}) + N_{n+2}(t'_{m}) - N_{2}(t'_{m}) + N_{n+3}(t'_{m}) - N_{3}(t'_{m}) - \cdots - N_{n}(t'_{m}) \right|$

Curve Modeling using B-Splines (4)

- □ Allocation of *t*' values using the *Chord Length* (CL) method with $t'_1 = 0$, $t'_{max} = n - 2$ and $t'_j = t'_{j-1} + t'_{max} \cdot \|\mathbf{s}_j - \mathbf{s}_{j-1}\| \cdot \left(\sum_{l=2}^m \|\mathbf{s}_l - \mathbf{s}_{l-1}\|\right)^{-1}, \quad j = 2,...,m$
- Implies that the chord length is a very close approximation to the arc length, assuming constant speed of a particle onto the curve
- CL method suffers from non-uniform noise and non-uniform sampling. Alternatively, the inverse chord length method (ICL) can be used.

Curve Matching using Knot-Points (1)

- □ A set of *M* different curves (sets of samples) is modeled using *M* cubic B-splines
- Control points cannot determine shape similarity, since different sets of control points may describe the same curve
- For each curve we derive its *knot-points* p_i , *i*=0,1,...,*n*, using its control points as $p_f = AC_f$ where A is the circulant matrix with [2/3,1/6,0,...,0,1/6] on its first row.
- □ Knot-points belong to the derived B-spline

Curve Matching using Knot-Points (2)

- Re-allocation of knot-points must be performed on each curve so that they are equal in number (/) and that they correspond
- □ The first knot-point is placed where the curve intersects the x-axis with its centroid on (0,0)
- The rest /-1 knot-points are placed equally spaced onto each curve
- □ The classifier based on the re-allocated knotpoints is based on minimizing $d^2 = \sum_{i=1}^{l} \|\mathbf{p}_i^{(a)} - \mathbf{p}_i^{(b)}\|^2$ where *a*, *b* denote splines subject to comparison

Curve Matching using F.D. (1)

□ At this point 2 major problems arise:

- the comparison and classification of curves must be invariant to possible affine transformations
- a rapid initial classification is demanded, to not compare a sample curve to all prototype curves
- □ These problems are addressed using *Fourier descriptors (F.D.), curve moments* and *NN*
- □ For each sample s_k, k=0,...,m-1, the sequence b_k=s_{xk}+ j s_{yk} is obtained and discrete Fourier factors are given by

$$F_i = \sum_{k=0}^{m-1} \mathbf{b}_k \cdot \exp\left(-\frac{j2\pi \cdot i \cdot k}{m}\right), \quad i = 0, 1, \dots, m-1$$

Curve Matching using F.D. (2)

□ If b_{k'} a sequence obtained from b_k by scaling, translation, rotation and shift:

$$F_i' = a \cdot F_i \cdot \exp\left(j\frac{\vartheta - 2\pi \cdot i \cdot k_0}{m}\right) + \mathbf{b}_0 \cdot \delta(0)$$

- □ Normalized Fourier descriptors $\mathbf{v}_i = |F_i|/|F_1|$ are invariant to *translation*, *rotation* and *starting point*
- Normalized Fourier descriptors are fed into a NN, so only the estimated knot-points are used, for reasonably small number of NN inputs

Curve Matching using Moments (1)

- Although Fourier descriptors possess desirable properties, they are poor description for the contour curve of an object.
- □ For this reason, they are used only as an 'initial description'.
- After assigning a class to each input sample curve, fine match is performed using curve moments
- □ Each spline is parametrized in terms of its arc lengths *s* as R(s) = [x(s), y(s)]

Curve Matching using Moments (2)

- □ The (*p*,*q*) order moments are estimated by $m(p,q)^{(j)} = \int_{s=0}^{s} x^{p}(s) \cdot y^{q}(s) \cdot w_{j}(x,y) ds$
- Using appropriate kernels *w_j*, *affine parameters* L, c aligning two curves, r(t')^(a) = L · r(t')^(b) + c , are estimated from their moments up to order two, solving two second degree polynomials
 For each of *M* modeled B-splines, curve moments are computed and stored

Curve Matching using Moments (3)

- For any B-spline corresponding to an input sample curve, moments are computed and possible L, c are obtained for all *M* curves
- Input curve is subjected to the estimated affine transformation before comparison to the corresponding prototype
- □ *Knot-point classification* is then performed
- Curve moments, although superior to Fourier descriptors, is *time-consuming*; so it is used only to refine the results obtained from the NN.

Object Classification

- Definition of primary *object classes* (airplanes, cars, vases etc.) using groups of curve prototypes, organized in object class database
- Each class contains several *prototypes* depicting different object instances or variations, different views or views in different level of detail
- Direct comparison of sample curves with all prototypes through curve matching extremely time consuming: *neural network (NN)* used at first stage of classification

Neural Network Training

- □ Normalized Fourier descriptors $\mathbf{v} = [v_1, v_2, ..., v_N]^T$ used as input to feedforward neural network
- □ NN attempts to map *input pattern* **v** to desired output pattern $\mathbf{d} = [d_1, d_2, ..., d_C]^T$
- □ In *training stage*, inputs v^(p), p=1,...,M, corresponding to a set of M curve prototypes, are fed into the NN
- Desired outputs d^(p), p=1,...,M are determined by setting one component of d^(p) equal to 1 and all others to 0

Neural Network Architecture

Two hidden layers, with N input neurons, N₁ and N₂ neurons in the 1st and 2nd hidden layer, and C neurons in the output layer:

Levenberg-Marquardt method used for training, attempting to minimize the sum-squared error between desired and actual output patterns

Neural Network Classification

- □ In *allocation* stage, the *B*-spline representation $\mathbf{v} = [v_1, v_2, ..., v_N]^T$ of a test curve is used as input to the NN
- The input curve is typically classified to the object class that corresponds to the maximum network output
- In order to avoid misclassification, R classes are selected, corresponding to the network outputs with the maximum values. Final classification obtained through *curve matching*

Knot Point Estimation Results (1)

Sample contours

B-splines with knot points

B-splines with control points

Knot Point Estimation Results (2)

Matching Results using Moments

Sample contours

Curve Matching

NN Classification Results

		Sample Curves									
		ß	ß	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M	<pre>{}</pre>	\${ }{	K Contraction of the second se	Ţ		
Object Class	\int	0.47	0.83	0.00	0.00	0.04	0.00	0.00	0.01	0.00	0.01
	July	0.00	0.00	1.00	0.72	0.01	0.01	0.00	0.00	0.01	0.00
	and the second sec	0.05	0.03	0.49	0.08	0.84	0.97	0.00	0.01	0.00	0.05
	n (n	0.00	0.02	0.01	0.01	0.01	0.00	0.95	0.68	0.04	0.00
		0.53	0.12	0.00	0.01	0.91	0.29	0.74	0.62	0.99	0.98

NN and Curve Matching Results

Object Class	NN Classification (1/2 correct)	Curve Matching (1 correct)		
	92 %	95 %		
	98 %	100 %		
for	89 %	96 %		
	95 %	98 %		
	99 %	100 %		
Total	94.6 %	97.8 %		

Conclusions - Further Work

- Direct content-based retrieval from video databases based on object shape apart from other features (color, texture, motion etc.)
- Affine-invariant *B-spline representation* of object contours
- Supervised classification of video objects into prototype object classes using *neural network*
- High level of abstraction in the representation of video sequences using higher level classes as combinations of primary object classes