Affine Invariant Representation and Classification of Object Contours for Image and Video Retrieval

Yannis Avrithis, Yiannis Xirouhakis and Stefanos Kollias

National Technical University of Athens Department of Electrical and Computer Engineering

Problem Statement

- Content-based retrieval from image/video databases based on object shape (contour)
- Extraction of video objects based on color and motion segmentation and tracking
- □ *B-spline modeling* of object contours
- Affine-invariant curve representation using NFD, curve moments & novel curve normalization algorithm (AICN)
- Supervised classification of video objects into prototype object classes using *neural network*

Applications

- Direct content-based retrieval based on object shape apart from other features (color, texture, motion etc.)
- High level of abstraction in the representation of video sequences using higher level classes as combinations of primary object classes
- □ *Generic object shape representation*, can be used with any curve matching algorithm
- □ Faster and more efficient *video queries*
- Multimedia database management

Assumptions / Constraints

- High resolution images / video available
- Main mobile objects existing in foreground for good performance of motion segmentation algorithms
- Images of relatively simple background for good performance of color segmentation
- Relatively *planar objects* in foreground to ensure contour similarity for similar objects

Video Object Extraction

- Shot cut detection and partitioning
- Unsupervised color and motion segmentation and tracking using M-RSST algorithm, based on information available in MPEG video streams
- Feature vectors constructed using frame characteristics, such as number of segments, location, size and average color components & motion vectors
- Selection of the most *representative shots* and extraction of *key frames* for each shot

Object Contour Extraction Results

Original frame

First stage of segmentation

Final segmentation result

Object contour

Curve Modeling using B-Splines (1)

- □ A dense set of *m* data curve points \mathbf{s}_j , j = 0,..,m-1 is given
- Input curve is modeled using closed cubic Bsplines consisting of n +1 connected curve segments r_i, i = 0,1,...,n
- Each segment is a linear combination of four *cubic polynomials* in the parameter $t \in [0,1]$:

$$\mathbf{r}_{i}(t) = \mathbf{C}_{i-1}Q_{0}(t) + \mathbf{C}_{i}Q_{1}(t) + \mathbf{C}_{i+1}Q_{2}(t) + \mathbf{C}_{i+2}Q_{3}(t)$$

where $Q_k(t) = a_{k0}t^3 + a_{k1}t^2 + a_{k2}t + a_{k3}$, k = 0,1,2,3

- Basis functions Q_k (t) are determined using
 continuity constraints in position, slope and curvature
 invariance property to coordinate transformations
- Modeled B-spline curve is given by

$$\mathbf{r}(t') = \sum_{k=0}^{n} \mathbf{r}_{i}(t'-i) = \sum_{k=0}^{n} \mathbf{C}_{i \mod(n+1)} N_{i}(t')$$

where $0 \le t' \le n-2$,

and $N_i(t')$ denote the $N_i(t') = -b$

$$\begin{array}{ll} Q_{3}(t'-i+3) & i-3 \leq t' < i-2 \\ Q_{2}(t'-i+2) & i-2 \leq t' < i-1 \\ Q_{1}(t'-i+1) & i-1 \leq t' < i \\ Q_{0}(t'-i) & i \leq t' < i+1 \\ 0 & otherwise \end{array}$$

Curve Modeling using B-Splines (3)

- Control points are determined so that the error between the observed data and the B-spline curve d² = ∑_{j=1}^m ||s_j − r(t'_j)||² is minimized
 For appropriate parametric values of t', MMSE solution is given in matrix form C_f = (P^TP)⁻¹P^Tf, where f contains given data points
- Allocation of t' values using Chord Length (CL) method, suffering from non-uniform noise / sampling, or Inverse Chord Length (ICL) method

Curve Matching using Knot Points

- Control points cannot determine shape similarity, since different sets of control points may describe the same curve
- □ *Knot points* \mathbf{p}_i , *i*=0,1,...,*n*, derived using control points as $\mathbf{p}_f = \mathbf{AC}_f$, where A is a circulant matrix with [2/3,1/6,0,...,0,1/6] on its first row.
- □ Knot-points belong to the derived B-spline
- Re-allocation of knot points must be performed on each curve so that they are equal in number and that they correspond

Knot Point Estimation Results

Normalized Fourier Descriptors (NFD)

The sample data sequence b_k = s_{xk} + j s_{yk}, k=0,...,m-1, is formed and discrete Fourier factors are given by

$$F_i = \sum_{k=0}^{m-1} \mathbf{b}_k \cdot \exp\left(-\frac{j2\pi \cdot i \cdot k}{m}\right), \quad i = 0, 1, \dots, m-1$$

□ If $\mathbf{b}_{k'}$ is a sequence obtained from \mathbf{b}_k by scaling, translation, rotation and shift:

$$F_i' = a \cdot F_i \cdot \exp\left(j\frac{\vartheta - 2\pi \cdot i \cdot k_0}{m}\right) + \mathbf{b}_0 \cdot \delta(0)$$

□ Normalized Fourier descriptors $\mathbf{v}_i = |F_i|/|F_1|$ are invariant to *translation*, *rotation & starting point*

Curve Matching using Moments

- NFD provide a poor description of object contours: *Fine matching* is necessary
- □ Each spline is parametrized in terms of its arc lengths *s* as R(s) = [x(s), y(s)], and the (p,q)order moments are estimated by

$$m(p,q)^{(j)} = \int_{s=0}^{s} x^{p}(s) \cdot y^{q}(s) \cdot w_{j}(x,y) \, ds$$

- Using appropriate kernels w_j, affine parameters aligning two curves are estimated from their moments up to order two
- Curve matching is *time-consuming*; it can only be used to refine classification results

Affine-Invariant Curve Normalization (1)

- A novel algorithm (AICN) is employed for removal of affine transformations without discarding shape information
- A series of linear transformations is applied to curves, with parameters estimated from 1st and 2nd order statistics of curve data
- □ Translation is removed by normalizing the gravity center of curve \mathbf{s}_k , k=0,...,m-1, to the axes origin, so that for the resulting data set: $\sum_{m=1}^{m-1} \sum_{m=1}^{m-1} \mathbf{s}_m = 0$

$$\sum_{k=0} \mathbf{s}_{xk} = \sum_{k=0} \mathbf{s}_{yk} = \mathbf{0}$$

Affine-Invariant Curve Normalization (2)

- Scale transformation is removed by 2 successive normalization steps (at 0° and 45°), so that $\sum_{k=0}^{m-1} \mathbf{s}_{xk}^2 = \sum_{k=0}^{m-1} \mathbf{s}_{yk}^2 = 1, \quad \sum_{k=0}^{m-1} \mathbf{s}_{xk} \mathbf{s}_{yk} = 0$
- □ Starting point and rotation normalized so that first and last elements, F_1 and F_{m-1} , of the curve Fourier transform become real and positive
- AICN permits direct curve classification by any existing curve matching method, since it preserves all curve shape information

Curve Normalization Results

Initial object contours

Normalized curves

Neural Network Classification (1)

- Definition of primary *object classes* (airplanes, cars, vases etc.) using groups of curve prototypes, organized in object class database
- NN classifier maps *input pattern* $\mathbf{v} = [v_1, v_2, ..., v_N]^T$ (NFD or normalized curve) to binary *output pattern* $\mathbf{d} = [d_1, d_2, ..., d_C]^T$:

Neural Network Classification (2)

- In training stage, inputs v^(p), p=1,...,M, corresponding to M curve prototypes, are fed into the NN. Desired outputs d^(p), p=1,...,M are determined by setting one component of d^(p) equal to 1 and all others to 0
- Levenberg-Marquardt method used for training
- □ In allocation stage, B-spline representation **v**=[v₁, v₂,..., v_N]^T of test curve is used as input to the NN. The maximum network output determines the corresponding object class

NN Classification Results

Object Class	Classification Results	
	NFD	AICN
Cars	89.2%	98.6%
Airplanes	83.6%	99.2%
Glasses	76.1%	94.9%
Spoons	90.4%	96.3%
Fish	84.7%	97.6%
Total	84.8%	97.3%

Conclusions - Further Work

- Direct content-based retrieval from video databases based on object shape apart from other features (color, texture, motion etc.)
- Affine-invariant representation of object contours can be used with any curve matching method
- Supervised classification of video objects into prototype object classes using *neural network*
- High level of abstraction in the representation of video sequences using higher level classes as combinations of primary object classes