On the use of Radon Transform for Facial Expression Recognition

Nicolas Tsapatsoulis, Yannis Avrithis and Stefanos Kollias

National Technical University of Athens Department of Electrical and Computer Engineering

Problem Statement

- □ *Facial expression recognition* based on two instances of a face in the same emotional state
- □ Face *detection* and *registration* to account for translation, scaling and rotation variations
- Spatiotemporal expression description based on Radon transform of motion vectors between neutral and 'apex' condition of the expression
- Radon curve *normalization* for translation, scaling & resolution invariant representation
- Expression *classification* using correlation criterion and neural network classifier

Facial Expression Recognition

- Human interaction consists of transmitted messages either *explicit* or *implicit*
- Expression recognition permits categorization of active & spontaneous expressions, interpretation of *implicit messages*, and understanding of *emotional states* using visual cues
- Recognition approaches divided into
 - □ *Static* : using a single face instance
 - □ *Semi-static* : using two instances, neutral and `apex'
 - Dynamic : using several frames (usually 3-15)

Assumptions / Constraints

- Semi-static approach adopted, using two images representing a face in its neutral condition and the 'apex' of the expression
- Only one face with significant scaling in expression images no multiface detection required
- The face is the same along the expression no aging or personal variations like make-up, eyeglasses or beard

Face Detection and Registration (1)

- □ Let $M(u, \theta)$ be a *face template* at orientation θ and scale u(h, v) described by horizontal scaling *h* and vertical scaling *v*
- □ If *F* is frame containing a face at arbitrary location, scale & rotation and $A \subseteq F$ a frame area, the *minimum correlation* between *A* and *M* is obtained at scale *u* and orientation θ :

$$r(u,\theta) = \min_{A \subset F} \left\{ \frac{|A - M(u,\theta)|}{\rho \cdot a \cdot b} \right\}$$

where $\rho = 1 - c \cdot |h| v - 2/3|, a = mean(A) and b = mean(M)$

Face Detection and Registration (2)

Best scale & orientation obtained by

 $[U, \Theta] = \operatorname{argmin}\{r(u, \theta)\}$

- □ Final area A* detected using template M(U, O) and transformed to standard coordinates using scaling & rotation according to U, O.
- Detection applied to frame of neutral condition parameters *U*, *O* re-used for detection in 'apex' of the expression
- Registration based on facial features (eyes, nose and mouth) not implemented - only required for face recognition

Optical Flow Estimation (1)

- □ Optical flow derived directly from facial pixel values $p_0(x,y)$, $p_1(x,y)$ of image frames F_0 , F_1 corresponding to neutral and 'apex' conditions
- □ Motion vectors $\hat{\mathbf{v}}(x, y) = (\hat{v}_x, \hat{v}_y)$ obtained using block matching :

$$\hat{\mathbf{v}}(x,y) = \operatorname*{argmin}_{(v_x,v_y)\in Q} \sum_{I=-n}^n \sum_{m=-n}^n |d(x+I,y+m;v_x,v_x)|$$

where $d(x,y; v_x, v_y) = p_0(x,y) - p_1(x - v_x, y - v_y)$ and $Q = \{-q, ..., q\} \times \{-q, ..., q\}$ is a search area

Optical Flow Estimation (2)

- Motion vectors only calculated for image blocks with significant error between neutral and 'apex' images, based on image dependent *thresholding*
- Logarithmic search employed for block matching to reduce computational load
- Median filtering performed on motion vector phase and magnitude (directional filtering) to achieve motion vector smoothness and discard estimation noise

Radon Transform

Spatio-temporal expression representation obtained through *Radon transform* of motion vectors at different angles:

$$R(\theta) = \sum_{u=-\infty}^{\infty} a_k(x, y) \Big|_{x=t\cos\theta - u\sin\theta, y=t\sin\theta + u\cos\theta}$$

where m.v. are expressed as
 $\hat{\mathbf{v}}_k(x, y) = a_k(x, y) e^{j\phi_k(x, y)}$

Expressions characterized by Radon transform projections on angles 0° and 90°, called `signatures'

Signature Normalization (1)

□ Let $R = [r_i], i \in F = \{0, ..., L-1\}$ be the Radon transform at angle 0° or 90°. *Vertical scale normalization* is performed first, as $s_i = r_i \left(\frac{1}{L}\sum_{k=0}^{L-1} r_k^2\right)^{-1/2}, i = 0, ..., L-1$

□ *Horizontal normalization* is performed next, by removing zero values from the left and right edges of $S = [s_i], i \in F$:

$$z_i = s_{i+i_L}, \quad i = 0, ..., i_R - i_L$$

where $i_L = \min\{i \mid i \in F'\}, i_R = \max\{i \mid i \in F'\}$
and $F' = \{i \in F : s_i > T\}$

Signature Normalization (2)

- □ *Re-sampling* of vector $Z = [z_i]$, $i \in F$ at K points using linear interpolation gives the normalized vector $N = [n_i]$, i = 0, ..., K-1
- □ The normalization process:
 - is *invariant* to translation, scaling and resolution of signature vectors
 - consists of *linear* operations no information is lost
 - is applied to all signatures in the same way no comparison or matching is required, and normalized signatures can be directly used with any classification mechanism

Experimental Results

75 images from the Yale database used, corresponding to expressions `normal', `happy', `surprised', `sad' and `sleepy'

'Apex' expressions with estimated motion vectors

Radon Transform Results

Radon transform curves for two different subjects at 0° and 90°, corresponding to four expressions:

Curve Normalization Results

Normalized signatures for two different subjects at 0° and 90°, corresponding to four expressions:

Curve Normalization Results

Original and normalized signatures of two subjects corresponding to expression 'sleepy' at 0 degrees

Classification using Correlation Coefficients

	Нарру А	Нарру В	Surprised A	Surprised B	Sad A	Sad B	Sleepy A	Sleepy B
Нарру А	1.0000	0.7859	-0.1193	-0.1906	-0.0225	0.1323	-0.0194	0.0262
Нарру В	0.7859	1.0000	-0.1619	-0.1461	0.0791	0.1750	-0.0550	-0.0107
Surprised A	-0.1193	-0.1619	1.0000	0.7564	0.6560	0.5561	-0.1663	-0.2771
Surprised B	-0.1906	-0.1461	0.7564	1.0000	0.8014	0.5475	-0.2752	-0.3388
Sad A	-0.0225	0.0791	0.6560	0.8014	1.0000	0.8411	-0.3254	-0.3196
Sad B	0.1323	0.1750	0.5561	0.5475	0.8411	1.0000	-0.2686	-0.2383
Sleepy A	-0.0194	-0.0550	-0.1663	-0.2752	-0.3254	-0.2686	1.0000	0.7842
Sleepy B	0.0262	-0.0107	-0.2771	-0.3388	-0.3196	-0.2383	0.7842	1.0000

Neural Network Classifier

- MLP network with 200 *input units*, four *output units* and one *hidden layer* with 20 units
- 20 signatures used for training set, 8 used for validation set and 32 for testing
- After 400 learning cycles of *backpropagation*, the NN could recognize all expressions of the training set and 7 out of 8 from the validation set
- □ The NN *generalized* well to the test set, with 87.5% overall correct classification

NN Classification Results

Expression	Нарру	Sadness	Surprised	Sleepy	
Нарру	8	0	1	0	
Sadness	0	5	0	0	
Surprise	0	2	7	0	
Sleepy	0	1	0	8	
Success	100%	62.5%	87.5%	100%	

Conclusions - Further Work

Facial expression recognition achieved through Radon transform of optical flow between neutral and 'apex' conditions of the expression

- Normalized signatures used directly for classification either with correlation or neural network, with promising results
- □ The method is currently applied on a *larger database* to evaluate its efficiency
- An extension is under investigation for expression recognition using video sequences