Efficient Face detection for Multimedia Applications

N. Tsapatsoulis, Y. Avrithis and S. Kollias Image, Video and Multimedia Lab. Dept. of Electrical and Computer Engineering National Technical University of Athens e-mail:{ntsap,iavr}@image.ntua.gr

Face Detection: Is it only for Face **Recognition?**

□ A few years earlier Face Detection <=> Face Recognition

Present Applications of Face Detection Face Recognition Content based Video Indexing and Retrieval Video Scene Classification / Annotation News Summarization

ICIP 2000, Vancouver, Canada

Face Detection as a part of Face Recognition Schemes

High Accuracy is required Remarkable results are obtained only if we pose rigorous constraints Algorithms are concentated in gray-scale images Template matching or low level feature detection

Time consuming procedures

ICIP 2000, Vancouver, Canada

Face Detection and Multimedia Applications

- In many cases its enough to detect the presence of a face in a picture / video sequence □ i.e. detect the anchorperson
- Fast Implementations (Real Time performance is) desirable)
 - example: news summarization
- Color should be exploited
 - Convenience with dedicated content based indexing /retrieval algorithms

ICIP 2000, Vancouver, Canada

The Proposed Scheme

- Combine color segmentation and skin color characteristics
- Use M-RSST as a general purpose segmentation algorithm.
- Associate each segment with a skin color probability obtained by an adaptive 2-D Gaussian density function used for modeling skin-tone color distribution;
- Exploit shape characteristics to discriminate face from skin segments => face probability
- Query-by-example framework proposed for interactive human face retrieval

ICIP 2000, Vancouver, Canada

Color Segmentation: M-RSST

- Multiresolution decomposition and construction of a truncated image pyramid
- All 4-connected region pairs assigned a link weight equal to the distance measure

$$d(X,Y) = \left\| \mathbf{c}_X - \mathbf{c}_Y \right\| -$$

Recursive merging of adjacent regions and boundary block splitting in each resolution level Fast algorithm, employed directly on MPEG streams with minimal decoding

ICIP 2000, Vancouver, Canada

 $a_X a_Y$

 $a_X + a_Y$

M-RSST Flowchart

ICIP 2000, Vancouver, Canada

The YCrCb color space and the human skin

Skin color can be modeled via the chrominance components of the YCrCb color model Skin color covers a small part of the Cr-Cb plane The influence of Y channel is small However, post processing steps are required: Other objects have skin like color Y channel influence not totally negligible Compact objects desirable => Filtering

Skin Color Modeling Issues

- Skin color subspace covers a small area of the *Cr-Cb* plane but:
 - ☐ it cannot be modeled in such a general way to be efficient for all images that include faces
 - 'relaxing' the model => increased number of False Alarms
 - a 'rigorous' model => increased number of Dismissals
- **False Alarm**: Detection of a face in a wrong position or in frames / pictures where no faces are contained
- **Dismissal:** A failure to detect an existing face

The proposed skin color model

Skin color characteristics are modeled via a 2D-Gaussian distribution

$$P(\mathbf{x} | \boldsymbol{\mu}_0, \mathbf{C}) = \frac{\exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_0)^T \mathbf{C}^{-1}(\mathbf{x} - \boldsymbol$$

x: input pattern (mean chrominance components of an image block) μ_0 : mean vector C: covariance matrix

ICIP 2000, Vancouver, Canada

IVML, ECE, NTUA

 $\{\boldsymbol{\mu}_{0}\}$

Skin-Color Region Extraction

- Re-estimation of the mean vector based on current image / frame: $\boldsymbol{\mu}_0 = (1 - m) \cdot \boldsymbol{\mu}_0 + m \cdot \boldsymbol{\mu}$ μ : the estimated from the current image / frame mean vector *m*: a memory tuning constant
- Skin-color region merging based on estimated skin-color **probability**: $d_C(X,Y) = [\max(1-p_X, 1-p_Y)]^2$
- Adjacent face segments merged remaining partition map not affected

Shape Processing

- Global shape features of segment contours Shape compactness: $g_x = 4\pi a_x / r_x^2$ Shape elongation: $\ell_X = \sqrt{\lambda_2} / \lambda_1$
- Both normalized in [0,1] and invariant to translation, scaling and rotation
- Combination with skin-color probability using non-linear functions – construction of an overall *face probability* map
- Segments with extremely irregular shape discarded

Segmentation and probability assignment

ICIP 2000, Vancouver, Canada

Face detection in a variety of situations

(a) Original images, (b) skin-color probability map, (c) final face probability map (including shape features).

ICIP 2000, Vancouver, Canada

Calculate the edges within the probable face segment Check whether an ellipses can be fitted to the edges

ICIP 2000, Vancouver, Canada

Experimental Results

Anchorpersons scenes: recorded from TV news; Various scenes: recorded from TV programs; Webcameras: Shots captured using Webcameras; Photos: Regular colored photos

A Retrieval Scenario

- Images in database segmented and color chrominance components, size and shape information stored
- Query-by-example : User presents a facial image; system performs face detection and ranks existing images according to several criteria
- Retrieval based on color similarity, facial scale or number of face segments possible
- Retrieved images returned to user; further manual selection used to adapt skin-color probabilistic model

Skin Color based Retrieval

Image Presented to the system Selected by the user segment

mem: 0.3

0.9992

0.9735 **IVML, ECE, NTUA**

ICIP 2000, Vancouver, Canada

0.9591

Retrieval based on Facial Scale

Image Presented to the system

mem: 0.8

Segmented Face

0.0873

0.0883

0.0969 **IVML, ECE, NTUA**

ICIP 2000, Vancouver, Canada

Facial area: 0.0867

0.0985

