Feature Map Hashing: Sub-linear Indexing of Appearance and Global Geometry

Yannis Avrithis, Giorgos Tolias and Yannis Kalantidis

(日)、(型)、(E)、(E)、(E)、(O)()

Image, Video and Multimedia Systems Laboratory National Technical University of Athens

ACM Multimedia 2010, 25-29th October 2010, Firenze, Italy

Introduction

Feature Maps

Feature Map Hashing

Experiments

Discussion – future work

Outline

Introduction

Feature Maps

Feature Map Hashing

Experiments

Discussion – future work

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Object retrieval

Problem description

- Fast search in a large dataset of images
- Images depicting the same object
- Robustness against viewpoint change, photometric variations, occlusion and background clutter

Our goal

- Both appearance and geometry within the indexing process
- Fast search in all dataset images with geometric constraints

Background

- Extract local features and descriptors
- Create visual codebook using clustering/hashing techniques
- Map features to visual words with approximate nearest neighbor search
- Use visual words to find correspondences between features
- Find inliers with RANSAC or approximation

Appearance and geometry

Appearance only

- Discriminative local features and descriptors: an easy way to deal with view-point change and occlusion
- Bag-of-Words (BoW) in retrieval: good performance with low computational cost
- BoW discards spatial relations

Geometry

• Important in many problems of computer vision like feature correspondence, image registration, wide baseline stereo matching, object recognition, and retrieval

(日)、(型)、(E)、(E)、(E)、(O)()

• Geometry essential to boost performance at large scale

State of the art limitations

Geometry for re-ranking

- Filtering stage: Based only on appearance [Sivic and Zisserman 2003]
- Re-ranking stage: Apply geometric or spatial constraints
- Geometric verification applied linearly only in the top ranking images [Philbin *et al.* 2007]

Indexing geometry

- Geometric hashing: only geometry, no appearance [Lamdan and Wolfson 1988][Chum and Matas 2006]
- Hough voting in transformation space: no feature quantization [Lowe 2004]
- Weak geometric information [Jegou et al. 2008]
- Geometric min-Hash: proximity constraints, small object discovery [Chum *et al.* 2009]

(日)、(型)、(E)、(E)、(E)、(O)()

Overview of our approach

- Estimate image alignment via single correspondence
- For each feature construct a feature map encoding normalized positions and appearance of all remaining features
- An image is represented by a collection of such feature maps
- RANSAC-like matching is reduced to a number of set intersections

(日)、(型)、(E)、(E)、(E)、(O)()

• Build inverted file of feature maps using min-wise independent permutations

Introduction

Feature Maps

Feature Map Hashing

Experiments

Discussion – future work

Local patches

- Each local feature is associated with an image patch *L*, which also represents an affine transform
- The rectified patch \mathcal{R}_0 is transformed to the patch via L
- The patch is rectified back to \mathcal{R}_0 via L^{-1}

Single correspondence hypothesis

- A patch correspondence $L \leftrightarrow R$
- The transformation from one patch to the other is RL^{-1}
- Each correspondence provides a transformation hypothesis.
- Transformation hypotheses are now O(n) and we can compute them all [Philbin *et al.* 2007]

・ロ・・ 日・ ・ 田・ ・ 田・ ・ 日・ ・ 20

Feature set rectification

- Rectify both feature sets by transformations L^{-1} and $R^{-1},$ then compare
- Extrapolate each local transform to the entire image frame
- Rectify the entire set of features in advance

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ � � @

Feature set rectification

- Rectify both feature sets by transformations L^{-1} and $R^{-1},$ then compare
- Extrapolate each local transform to the entire image frame
- Rectify the entire set of features in advance

Spatial quantization

- Encode positions in polar coordinates (ρ, θ)
- Quantize positions in the rectified frames
- Define spatial codebook $\mathcal{U} \subseteq \mathbb{R}^2$ with $|\mathcal{U}| = k_{\rho} \times k_{\theta} = k_u$ bins

Spatial quantization

- Encode positions in polar coordinates (ρ, θ)
- Quantize positions in the rectified frames
- Define spatial codebook $\mathcal{U}\subseteq \mathbb{R}^2$ with $|\mathcal{U}|=k_
 ho imes k_ heta=k_u$ bins

- An image is represented by a local feature set ${\cal P}$
- Define the joint (visual-spatial) codebook $\mathcal{W} = \mathcal{V} \times \mathcal{U}$ with $|\mathcal{W}| = k_v k_u = k$ bins
- To construct a feature map we rectify a feature set and assign rectified features to spatial bins and visual words
- There is a different map for each origin; represent each image with a feature map collection ${\cal F}_P$
- Can be seen as a local descriptor encoding the global feature set rectified in a local coordinate frame

$$f_P(\hat{x}) = h_{\mathcal{W}} (P^{(\hat{x})})$$

(日)、(型)、(E)、(E)、(E)、(O)()

- An image is represented by a local feature set ${\cal P}$
- Define the joint (visual-spatial) codebook $\mathcal{W} = \mathcal{V} \times \mathcal{U}$ with $|\mathcal{W}| = k_v k_u = k$ bins
- To construct a feature map we rectify a feature set and assign rectified features to spatial bins and visual words
- There is a different map for each origin; represent each image with a feature map collection ${\cal F}_P$

(日)、(型)、(E)、(E)、(E)、(O)()

• Can be seen as a local descriptor encoding the global feature set rectified in a local coordinate frame

$$\oint f_P(\hat{x}) = h_W (P^{(\hat{x})})$$

feature map of P wrt origin \hat{x}

- An image is represented by a local feature set P
- Define the joint (visual-spatial) codebook $\mathcal{W} = \mathcal{V} \times \mathcal{U}$ with $|\mathcal{W}| = k_v k_u = k$ bins
- To construct a feature map we rectify a feature set and assign rectified features to spatial bins and visual words
- There is a different map for each origin; represent each image with a feature map collection ${\cal F}_P$
- Can be seen as a local descriptor encoding the global feature set rectified in a local coordinate frame

(日)、(型)、(E)、(E)、(E)、(O)()

- An image is represented by a local feature set P
- Define the joint (visual-spatial) codebook $\mathcal{W} = \mathcal{V} \times \mathcal{U}$ with $|\mathcal{W}| = k_v k_u = k$ bins
- To construct a feature map we rectify a feature set and assign rectified features to spatial bins and visual words
- There is a different map for each origin; represent each image with a feature map collection ${\cal F}_P$
- Can be seen as a local descriptor encoding the global feature set rectified in a local coordinate frame

イロト 不得 トイヨト イヨト ヨー うへつ

Feature maps – example

• Well aligned feature sets are likely to have maps with a high degree of overlap

Feature maps – example

• Well aligned feature sets are likely to have maps with a high degree of overlap

DQC

SAC

DQC

for all visual words that P, Q have in common

Feature map similarity - example

Inliers using fast spatial matching [FastSM - Philbin et al.] (35 inliers)

Inliers using feature map similarity (32 inliers)

Distribution of ρ

- Non-linear transformation using Weibull CDF
- Estimation of parameters via maximum likelihood
- Bins equally populated when distribution w.r.t. ρ is uniform

(日)、(型)、(E)、(E)、(E)、(O)()

Unique visual words

• Use as origins only features that map uniquely to visual words

Range parameter τ

- Add constraints on spatial proximity via range parameter τ
- + $\tau \in [0,1]$ controls the balance between local and global geometry

Origin selection

- Statistically measure which visual words get better aligned
- Select as origins only features mapped to those visual words

Unique visual words

• Use as origins only features that map uniquely to visual words

Range parameter τ

- Add constraints on spatial proximity via range parameter τ
- + $\tau \in [0,1]$ controls the balance between local and global geometry

Origin selection

- Statistically measure which visual words get better aligned
- Select as origins only features mapped to those visual words

Unique visual words

• Use as origins only features that map uniquely to visual words

Range parameter τ

- Add constraints on spatial proximity via range parameter τ
- + $\tau \in [0,1]$ controls the balance between local and global geometry

Origin selection

- Statistically measure which visual words get better aligned
- Select as origins only features mapped to those visual words

イロト 不得 トイヨト イヨト ヨー うへつ

Unique visual words

• Use as origins only features that map uniquely to visual words

Range parameter τ

- Add constraints on spatial proximity via range parameter τ
- + $\tau \in [0,1]$ controls the balance between local and global geometry

Origin selection

- Statistically measure which visual words get better aligned
- Select as origins only features mapped to those visual words

イロト 不得 トイヨト イヨト ヨー うへつ

Unique visual words

• Use as origins only features that map uniquely to visual words

Range parameter τ

- Add constraints on spatial proximity via range parameter τ
- + $\tau \in [0,1]$ controls the balance between local and global geometry

Origin selection

- Statistically measure which visual words get better aligned
- Select as origins only features mapped to those visual words

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Unique visual words

• Use as origins only features that map uniquely to visual words

Range parameter τ

- Add constraints on spatial proximity via range parameter τ
- + $\tau \in [0,1]$ controls the balance between local and global geometry

Origin selection

- Statistically measure which visual words get better aligned
- Select as origins only features mapped to those visual words

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Introduction

Feature Maps

Feature Map Hashing

Experiments

Discussion – future work

Towards indexing

- FMS is a fast way of matching 2 images, but still not enough for indexing
- A feature map is an extremely sparse histogram; bin count typically takes values in $\{0,1\}$
- Each feature map f is represented by set $\bar{f} \subset \mathcal{W}$ of non-empty bins

Min-wise independent permutations

- The feature space is now $\mathbb{F} = \mathcal{P}(\mathcal{W})$, the powerset of \mathcal{W}
- $h: \mathbb{F} \to \mathcal{W}$, hash function mapping objects back to \mathcal{W}
- $\pi: \mathbb{F} \to \mathbb{F}$, a random permutation
- Given a feature map $\bar{f}\subset\mathcal{W}:$ compute a hash value $h(\bar{f})=\min\{\pi(\bar{f})\}$

$$\Pr[\min\{\pi(\bar{f})\} = \min\{\pi(\bar{g})\}] = \frac{|\bar{f} \cap \bar{g}|}{|\bar{f} \cup \bar{g}|} = J(\bar{f}, \bar{g})$$

(日)、(型)、(E)、(E)、(E)、(O)()

 Two features maps are hashed to the same value with probability equal to their resemblance or Jaccard similarity coefficient

Map sketch

- Construct a set $\Pi = \{ \ \pi_i : i = 1, \dots, m \}$ of m independent random permutations
- Represent each feature map $ar{f}$ by map sketch $\mathbf{f} \in \mathcal{W}^m$,

$$\mathbf{f} = \mathbf{f}(\bar{f}) = [\min\{\pi_1(\bar{f})\}, \dots, \min\{\pi_m(\bar{f})\}]^{\mathrm{T}}$$

- Sketch similarity, count number of elements that sketches $\mathbf{f},\,\mathbf{g}$ have in common

$$s_K(\mathbf{f}, \mathbf{g}) = m - \|\mathbf{f} - \mathbf{g}\|_0$$

Feature map hashing (FMH)

- \bullet Map sketch collection ${\bf F} :$ set of all map sketches ${\bf f}$ of an image
- Image similarity reduces to sketch similarity

$$S_M(\mathbf{F}, \mathbf{G}) = \max_{\mathbf{f} \in \mathbf{F}} \max_{\mathbf{g} \in \mathbf{G}} s_K(\mathbf{f}, \mathbf{g})$$

• Collisions may appear for several pairs of maps; sum all sketch similarities instead of keeping the best one

$$S_K(\mathbf{F}, \mathbf{G}) = \sum_{\mathbf{f} \in \mathbf{F}} \sum_{\mathbf{g} \in \mathbf{G}} s_K(\mathbf{f}, \mathbf{g})$$

(日)、(型)、(E)、(E)、(E)、(O)()

Multiple matching pairs of feature maps

イロト イポト イヨト イヨト 二百

Multiple matching pairs of feature maps

イロト イポト イヨト イヨト 二百

Multiple matching pairs of feature maps

Multiple matching pairs of feature maps

Multiple matching pairs of feature maps

Multiple matching pairs of feature maps

Indexing

Index construction

- Represent the entire dataset by triplet (\hat{v}, w, π) (origin, sketch element, permutation)
- Use an inverted file for sub-linear search
- Memory requirements $5 \times$ a typical baseline system

Query

- Construct triplet (\hat{v}, w, π) for query image
- Rank images with a voting process
- Re-estimate transformation parameters using LO-RANSAC
- Re-ranking is an order of magnitude faster than FastSM, because an initial estimate is already available

(日)、(型)、(E)、(E)、(E)、(O)()

Outline

◆□ > ◆圖 > ◆臣 > ◆臣 > ○臣 - のへで

Introduction

Feature Maps

Feature Map Hashing

Experiments

Discussion – future work

European Cities Dataset 50K (EC50K)

- 778 Annotated images
- 20 groups of photos
- 5 queries from each group

Publicly available: http://image.ntua.gr/iva/datasets/ec50k

European Cities Dataset 50K (EC50K)

- 778 Annotated images
- 20 groups of photos
- 5 queries from each group
- 50,000 distractor images

Publicly available: http://image.ntua.gr/iva/datasets/ec50k

Results EC50K

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Results Oxford Buildings - Inria Holidays

Dataset	Holidays		Oxford	
Method	1.4K	51.4K	5K	55K
BOW	0.583	0.492	0.372	0.329
WGC	0.591	0.510	0.375	0.333
FMH	0.610	0.542	0.362	0.362
BOW+FastSM	0.622	0.537	0.421	0.356
WGC+FastSM	0.626	0.542	0.436	0.388
FMH+LO(100)	0.639	0.556	0.422	0.391
FMH+LO(1000)	-	0.571	0.431	0.410

Retrieval Examples

Outline

◆□ > ◆圖 > ◆臣 > ◆臣 > ○臣 - のへで

Introduction

Feature Maps

Feature Map Hashing

Experiments

Discussion – future work

Discussion – future work

Discussion

- First work to integrate appearance and global geometry in sub-linear image indexing
- We make spatial matching work at large scale, and demonstrate how this keeps precision almost unaffected under a significant amount of distractors
- We see it as a challenge for future feature detectors to achieve better alignment

(日)、(型)、(E)、(E)、(E)、(O)()

Future work

- Mine frequent feature maps from large image dataset
- Create codebook of feature maps

FMH page:

http://image.ntua.gr/iva/research/feature_map_hashing

EC50K dataset page:

http://image.ntua.gr/iva/datasets/ec50k

Thank you!

(日)、(型)、(E)、(E)、(E)、(O)()