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Object retrieval

Problem description

• Fast search in a large dataset of images

• Images depicting the same object

• Robustness against viewpoint change, photometric variations,
occlusion and background clutter

Our goal

• Both appearance and geometry within the indexing process

• Fast search in all dataset images with geometric constraints



Background

• Extract local features and descriptors
• Create visual codebook using clustering/hashing techniques
• Map features to visual words with approximate nearest neighbor search
• Use visual words to find correspondences between features
• Find inliers with RANSAC or approximation



Appearance and geometry

Appearance only

• Discriminative local features and descriptors: an easy way to deal with
view-point change and occlusion

• Bag-of-Words (BoW) in retrieval: good performance with low
computational cost

• BoW discards spatial relations

Geometry

• Important in many problems of computer vision like feature
correspondence, image registration, wide baseline stereo matching,
object recognition, and retrieval

• Geometry essential to boost performance at large scale



State of the art limitations

Geometry for re-ranking

• Filtering stage: Based only on appearance [Sivic and Zisserman 2003]

• Re-ranking stage: Apply geometric or spatial constraints

• Geometric verification applied linearly only in the top ranking images
[Philbin et al. 2007]

Indexing geometry

• Geometric hashing: only geometry, no appearance [Lamdan and
Wolfson 1988][Chum and Matas 2006]

• Hough voting in transformation space: no feature quantization [Lowe
2004]

• Weak geometric information [Jegou et al. 2008]

• Geometric min-Hash: proximity constraints, small object discovery
[Chum et al. 2009]



Overview of our approach

• Estimate image alignment via single correspondence

• For each feature construct a feature map encoding normalized
positions and appearance of all remaining features

• An image is represented by a collection of such feature maps

• RANSAC-like matching is reduced to a number of set intersections

• Build inverted file of feature maps using min-wise independent
permutations
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Local patches

• Each local feature is associated with an image patch L, which also
represents an affine transform

• The rectified patch R0 is transformed to the patch via L

• The patch is rectified back to R0 via L−1
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Single correspondence hypothesis

• A patch correspondence L↔ R

• The transformation from one patch to the other is RL−1

• Each correspondence provides a transformation hypothesis.

• Transformation hypotheses are now O(n) and we can compute them
all [Philbin et al. 2007]



Feature set rectification

• Rectify both feature sets by transformations L−1 and R−1, then
compare

• Extrapolate each local transform to the entire image frame

• Rectify the entire set of features in advance
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Feature set rectification

• Rectify both feature sets by transformations L−1 and R−1, then
compare

• Extrapolate each local transform to the entire image frame

• Rectify the entire set of features in advance
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Spatial quantization

• Encode positions in polar coordinates (ρ, θ)

• Quantize positions in the rectified frames

• Define spatial codebook U ⊆ R2 with |U| = kρ × kθ = ku bins
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Spatial quantization

• Encode positions in polar coordinates (ρ, θ)

• Quantize positions in the rectified frames

• Define spatial codebook U ⊆ R2 with |U| = kρ × kθ = ku bins
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Feature maps

• An image is represented by a local feature set P

• Define the joint (visual-spatial) codebook W = V × U with
|W| = kvku = k bins

• To construct a feature map we rectify a feature set and assign
rectified features to spatial bins and visual words

• There is a different map for each origin; represent each image with a
feature map collection FP

• Can be seen as a local descriptor encoding the global feature set
rectified in a local coordinate frame

fP (x̂) = hW (P (x̂))

feature map of P wrt origin x̂ rectified feature set P wrt origin x̂

histogram wrt joint codebook W
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Feature maps – example

• Well aligned feature sets are likely to have maps with a high degree of
overlap
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Feature maps – example

• Well aligned feature sets are likely to have maps with a high degree of
overlap
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Feature map similarity (FMS)

for all visual words that P,Q have in common

for all origins mapped to visual word v

SF (P,Q) = max
v∈V (P,Q)

max
x̂∈Hv(P )
ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)

feature map of image P wrt origin x̂

feature map of image Q wrt origin ŷ
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ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)
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Feature map similarity (FMS)
for all visual words that P,Q have in common

for all origins mapped to visual word v
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feature map of image P wrt origin x̂

feature map of image Q wrt origin ŷ
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Feature map similarity - example

Inliers using fast spatial matching [FastSM - Philbin et al. ] (35 inliers)

Inliers using feature map similarity (32 inliers)



Distribution of ρ

• Non-linear transformation using Weibull CDF

• Estimation of parameters via maximum likelihood

• Bins equally populated when distribution w.r.t. ρ is uniform

0 50 100 150 200 250 300
0

0.25

0.5

0.75

1

 

 

Data radius distribution
Estimated Weibull PDF
Weibull CDF



Memory savings – speed

Unique visual words
• Use as origins only features that map uniquely to visual words

Range parameter τ
• Add constraints on spatial proximity via range parameter τ
• τ ∈ [0, 1] controls the balance between local and global geometry

Origin selection
• Statistically measure which visual words get better aligned
• Select as origins only features mapped to those visual words
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Memory savings – speed
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Towards indexing

• FMS is a fast way of matching 2 images, but still not enough for
indexing

• A feature map is an extremely sparse histogram; bin count typically
takes values in {0, 1}

• Each feature map f is represented by set f̄ ⊂ W of non-empty bins



Min-wise independent permutations

• The feature space is now F = P(W), the powerset of W
• h : F→W, hash function mapping objects back to W
• π : F→ F, a random permutation

• Given a feature map f̄ ⊂ W: compute a hash value
h(f̄) = min{π(f̄)}

Pr[min{π(f̄)} = min{π(ḡ)}] =
|f̄ ∩ ḡ|
|f̄ ∪ ḡ|

= J(f̄ , ḡ)

• Two features maps are hashed to the same value with probability
equal to their resemblance or Jaccard similarity coefficient



Map sketch

• Construct a set Π = { πi : i = 1, . . . ,m} of m independent random
permutations

• Represent each feature map f̄ by map sketch f ∈ Wm,

f = f(f̄) = [min{π1(f̄)}, . . . ,min{πm(f̄)}]T

• Sketch similarity, count number of elements that sketches f , g have in
common

sK(f ,g) = m− ‖f − g‖0



Feature map hashing (FMH)

• Map sketch collection F: set of all map sketches f of an image

• Image similarity reduces to sketch similarity

SM (F,G) = max
f∈F

max
g∈G

sK(f ,g)

• Collisions may appear for several pairs of maps; sum all sketch
similarities instead of keeping the best one

SK(F,G) =
∑
f∈F

∑
g∈G

sK(f ,g)



Matching maps

Multiple matching pairs of feature maps
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Matching maps

Multiple matching pairs of feature maps



Matching maps

Multiple matching pairs of feature maps



Indexing

Index construction

• Represent the entire dataset by triplet (v̂, w, π) (origin, sketch
element, permutation)

• Use an inverted file for sub-linear search

• Memory requirements 5× a typical baseline system

Query

• Construct triplet (v̂, w, π) for query image

• Rank images with a voting process

• Re-estimate transformation parameters using LO-RANSAC

• Re-ranking is an order of magnitude faster than FastSM, because an
initial estimate is already available
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European Cities Dataset 50K (EC50K)

• 778 Annotated images

• 20 groups of photos

• 5 queries from each group

• 50,000 distractor images

Publicly available: http://image.ntua.gr/iva/datasets/ec50k

http://image.ntua.gr/iva/datasets/ec50k
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Results EC50K
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Results Oxford Buildings - Inria Holidays

Dataset Holidays Oxford

Method 1.4K 51.4K 5K 55K

BOW 0.583 0.492 0.372 0.329
WGC 0.591 0.510 0.375 0.333
FMH 0.610 0.542 0.362 0.362

BOW+FastSM 0.622 0.537 0.421 0.356
WGC+FastSM 0.626 0.542 0.436 0.388
FMH+LO(100) 0.639 0.556 0.422 0.391

FMH+LO(1000) - 0.571 0.431 0.410



Retrieval Examples

FMH

BOW
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Discussion – future work

Discussion

• First work to integrate appearance and global geometry in sub-linear
image indexing

• We make spatial matching work at large scale, and demonstrate how
this keeps precision almost unaffected under a significant amount of
distractors

• We see it as a challenge for future feature detectors to achieve better
alignment

Future work

• Mine frequent feature maps from large image dataset

• Create codebook of feature maps



FMH page:
http://image.ntua.gr/iva/research/feature_map_hashing

EC50K dataset page:
http://image.ntua.gr/iva/datasets/ec50k

Thank you!

http://image.ntua.gr/iva/research/feature_map_hashing
http://image.ntua.gr/iva/datasets/ec50k
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