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Community photo collections

clustering / landmark recognition

• focus on popular subsets

• applications: browsing, 3D reconstruction
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Figure 2: Representative images for the top landmark in each of the top 20 North American cities. All parts of the figure, including

the representative images, textual labels, and even the map itself were produced automatically from our corpus of geo-tagged photos.

about 110,000 photos, again making it difficult to generalize their

results. Their method also does not scale well to a global image

collection, as we discussed in Section 3. There is a considerable

earlier history of work in the Web and digital libraries community

on organizing photo collections; however those papers in general

make little or no use of image content (e.g., [1]) and again do not

provide large-scale quantitative results.

8. CONCLUSIONS
In this paper we introduce techniques for analyzing a global col-

lection of geo-referenced photographs, and evaluate them on nearly

35 million images from Flickr. We present techniques to automat-

ically identify places that people find interesting to photograph,

showing results for thousands of locations at both city and land-

mark scales. We develop classification methods for predicting these

locations from visual, textual and temporal features. These meth-

ods reveal that both visual and temporal features improve the ability

to estimate the location of a photo compared to using just textual

tags. Finally we demonstrate that representative photos can be se-

lected automatically despite the large fraction of photos at a given

location that are unrelated to any particular landmark.

The techniques developed in this paper could be quite useful in

photo management and organization applications. For example, the

geo-classification method we propose could allow photo manage-

ment systems like Flickr to automatically suggest geotags, signif-

icantly reducing the labor involved in adding geolocation annota-

tions. Our technique for finding representative images is a practical

way of summarizing large collections of images. The scalability of

our methods allows for automatically mining the information latent

in very large sets of images; for instance, Figures 2 and 3 raise the

intriguing possibility of an online travel guidebook that could au-

tomatically identify the best sites to visit on your next vacation, as

judged by the collective wisdom of the world’s photographers.

In this paper we have focused on using geospatial data as a form

of relational structure, and combining that with content from tags

and image features. An interesting future direction is to relate this

back to the explicit relational structure in the social ties between

photographers. Preliminary investigation suggests that these can

be quite strongly correlated — for example, we observe that if two

users have taken a photo within 24 hours and 100 km of each other,

on at least five occasions and at five distinct geographic locations,

there is a 59.8% chance that they are Flickr contacts.
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Community photo collections

retrieval / location recognition

• include all images, has not yet scaled enough

• applications: automatic geo-tagging, camera pose estimation



State-of-the-art limitations

location recognition

• city-scale, local features, inverted index [Schindler et al. 2007]

• im2gps: world scale, global features, low matching accuracy,
geolocation probability map [Hayes and Efros 2008]

structure from motion / 3D reconstruction

• photo tourism: up to 103 images [Snavely et al. 2006]

• city-scale model reconstuction, 105 images [Agarwal et al. 2009]

clustering / landmark recognition

• web-scale clustering: no location data, popular locations [Chum and
Matas 2010]

• overlaping tiles, pairwise homography estimation [Quack et al. 2008,
Gammeter et al. 2009]

• tour the world: search by travel guides, parallel computing [Zheng et
al. 2009]



An overview of our approach

View clustering

• identify images that potentially depict views of the same scene

• geo clustering: according to location

• visual clustering: according to visual similarity

• use sub-linear indexing in the clustering process



An overview of our approach

Scene maps

• align all images for each visual cluster to a reference image

• construct a 2D scene map by grouping similar local features

• extend index, retrieval, and spatial matching for scene maps



Kernel Vector Quantization
[Tipping and Schölkopf 2001]

• input dataset: D ⊆ X, where (X, d) is a metric space

• codebook: a small subset Q(D) such that distortion is minimized

• for codebook vector x ∈ Q(D), cluster C(x) contains all points y ∈ D
within distance r:

C(x) = {y ∈ D : d(x, y) < r}

• obtain a sufficiently sparse solution by solving a linear programming
problem

• pairwise distance matrix: quadratic in the dataset size |D|



Kernel Vector Quantization

properties:

• codebook vectors are points of
the original dataset: Q(D) ⊆ D

• distortion upper bounded by r:
for all x ∈ Q(D)

max
y∈C(x)

d(x, y) < r

• the cluster collection

C(D) = {C(x) : x ∈ Q(D)}

is a cover for D

• clusters are overlapping
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
R=0.25 m=8



Geo clustering

• given set of photos P ⊆ P in the metric space (P, dg)
• each photo p ∈ P is represented by tuple (`p, Fp) (location, features)

• dg: the great circle distance

• construct codebook Qg(P ) by KVQ of P with scale parameter rg

• geo-cluster: Cg(p) = {q ∈ P : dg(p, q) < rg}
• geo-cluster collection: Cg(P ) = {Cg(p) : p ∈ Qg(P )}
• maximum distortion: photos taken e.g. further than 2km apart are

not likely to depict the same scene



Geo clustering—example
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Visual clustering

visual similarity measure

• I(Fp, Fq): number of inliers between visual feature sets Fp, Fq of
photos p, q respectively



Visual clustering

• for each geo-cluster G ∈ Cg(P ), construct codebook Qv(G) by KVQ
in space (P, dv) with scale parameter rv

• the exact formula of dv(p, q) is not important, the scale parameter
specifies a threshold in the number of inliers

• visual cluster: Cv(p) = {q ∈ G : dv(p, q) < rv}
• visual cluster collection: Cv(G) = {Cv(p) : p ∈ Qv(G)}
• maximum distortion: equivalent to minimum number of inliers

• overlapping: support gradual transitions of views



Visual clustering

geo-cluster specific sub-linear indexing

• bottleneck: computation of pairwise distances, quadratic in |G| →
inverted file indexed by both visual word and geo-cluster

• given a query image q ∈ G, find all matching images p ∈ G with
I(Fp, Fq) > τ in constant time, typically less than one second

• the entire computation is now linear in |G|



Visual clustering—example

1, 146 geo-tagged Flickr images of Pantheon, Rome

• 258 resulting visual clusters

• 30 images at each visual cluster on average

• an image belongs to 4 visual clusters on average
8

Fig. 2 Photos associated to the centers of the most populated visual clusters from Pantheon,
Rome.

3.3 Visual Clustering

As in [39], we will say that any two photos p, q ∈ P are connected if at least one rigid

object is visible in both, possibly under different viewpoints. A scene is then defined

as a subset S ⊆ P of connected photos. That is, for all p, q ∈ S, we may visually match

common objects under rigid 3D geometry regardless of viewpoint. Local visual features

and descriptors are employed for this purpose, as detailed in section 5.1. The output

of visual matching is typically the number of inliers I(p, q) between visual feature sets

Fp, Fq of photos p, q respectively.

We now apply KVQ to each geo-cluster G ∈ Cg(P ) in space (P, dv) with scale

parameter rv. Since I(Fp, Fq) is a similarity measure, any decreasing function will do

as a metric, e.g . dv(p, q) = exp{−I(Fp, Fq)}. The exact formula of dv(p, q) is not im-

portant; in effect, the scale parameter specifies a threshold τ = − log rv in the number

of inliers. Let Qv(G) be the resulting codebook, and define visual cluster Cv(p) = {q ∈
G : dv(p, q) < rv} for p ∈ G and visual cluster collection Cv(G) = {Cv(p) : p ∈ Qv(G)},
similarly to geo-clustering. Repeating over all geo-clusters, the complete codebook

Q(P ) over the entire dataset is the union Q(P ) =
⋃

G∈Cg(P )Qv(G). Finally, the set of

all view clusters C(P ) is defined accordingly as C(P ) = {Cv(p) : p ∈ Q(P )}.
The main bottleneck the clustering process above is the computation of pairwise

distances, which is typically quadratic in the size of the dataset. This is not an issue in

geo-clustering but is critical in visual clustering. Our solution here is geo-cluster specific

sub-linear indexing. In particular, we use an inverted file indexed by both visual word

and geo-cluster. Given a query image q ∈ G, we find all matching images p ∈ G

with I(Fp, Fq) > τ in constant time that is typically less than one second. The entire

computation is now linear in |G|.
To illustrate the effect of visual clustering on a set of photos, we give an example

from Pantheon, Rome, following the examples appearing in [39] and [34]. In particular,

we select all Flickr photos geo-tagged in Rome9. We then separate a seed set of photos

with tag pantheon and expand this set by adding all Rome photos that are visually

matching any other photo in the seed set. We end up with a total of 1146 images that

we consider to be a single geo-cluster. The resulting visual clusters are 258. The average

visual cluster size is 30 images and an image belongs to 4 visual clusters on average,

due to overlapping.

9 Data uploaded until 30/09/2009



Visual clustering—example
9

Fig. 3 Photos in a sample of visual clusters from Pantheon. The first image (on the left) of
each cluster corresponds to the cluster center.

Figure 2 depicts photos corresponding to cluster centers for the most populated

clusters. Comparing to [39], the objective here is neither summarization nor canonical

view selection, and there is no requirement for orthogonality between cluster centers.

On the other hand, the maximal distance between photos in a single visual cluster is

such that we can subsequently align all of them in a scene map. Figure 3 depicts images

in a sample of visual clusters. Due to the strict matching process, images in each visual

cluster are quite similar. The last cluster at the bottom appear to be diverse, but close

observation reveals that all images are connected—that is, share a common rigid image

part—with the first image in the cluster, that is the cluster center.

3.4 Discussion

Different strategies are followed for clustering in existing research works. For instance,

Crandall et al . [10] and Yunpeng et al . [24] use mean-shift to perform geo-clustering

alone and mine high-density locations corresponding to popular places. On the other

hand, a second layer of visual clustering follows in other approaches, using different

algorithms including k-means ([19]) and agglomerative clustering ([34],[11],[46]). For

geo-clustering, Kenedy et al . [19] and Zhenget al . [46] use the same algorithm as for

visual clustering, whereas Quack et al . [34] and Gammeter et al . [11] simply quantize

locations into overlapping rectangular tiles. There are also [23], [39] and [9] which

perform visual clustering alone. Naturally, this does not scale well.

The main drawback of k-means and agglomerative clustering is that there is no

control over the maximal intra-cluster distance. This is crucial because it may lead to

geo-clusters with photos taken too far apart, or visual clusters with photos that have

too few inliers. Note that k-means requires a vector space anyway, so it cannot use the



View cluster alignment

so far we know:

• the image associated to the center of a view cluster shares at least
one rigid object with all other images in the cluster

alignment

• treat this image as a reference for the cluster and align all other
images to it

• initial estimates available from the view clustering stage—only local
optimization needed



View cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images
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Palau Nacional, Montjuic, Barcelona—input images



View cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images



View cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images
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Palau Nacional, Montjuic, Barcelona—aligned images



View cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images



Scene map construction

• F (p): the union of features over all images in visual cluster Cv(p)
after alignment

position aligned to reference image p feature set of photo q

F (p) =
⋃

q∈Cv(p)

{( Hqpx ,w) : (x,w) ∈ Fq }

union over all photos q of Cv(p) (position, visual word)

• construct a compact representation of F (p) → scene map S(p)
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Scene map construction

• F (p): the union of features over all images in visual cluster Cv(p)
after alignment

position aligned to reference image p feature set of photo q

F (p) =
⋃

q∈Cv(p)

{( Hqpx ,w) : (x,w) ∈ Fq }

union over all photos q of Cv(p) (position, visual word)

• construct a compact representation of F (p) → scene map S(p)



Scene map construction

• construct minimal S(p) ⊆ F (p), such that no feature in F (p) is too
distant from its nearest neighbor in S(p) → vector quantization

• partition F (p) into a number of disjoint sets, each corresponding to a
visual word w and apply KVQ separately

• the scale parameter rx = θ, where θ is the error threshold used in
spatial matching

• join the resulting codebooks into a single scene map



Scene map construction—example

visual cluster containing 30 images of Palau Nacional, Montjuic



Scene map construction—example

before vector quantization

before KVQ after KVQ compression rate

features 11, 623 9, 924 15%
inverted file entries 11, 165 8, 616 23%



Scene map construction—example

after vector quantization

before KVQ after KVQ compression rate

features 11, 623 9, 924 15%
inverted file entries 11, 165 8, 616 23%



Scene map retrieval

index construction:

• scene maps and images have the same representation—sets of features

• treat scene maps as images for indexing and retrieval

• index all scene maps by visual word in an inverted file

query:

• retrieve scene maps by histogram intersection and TF-IDF

• re-rank using the single correspondence assumption [Philbin et al.
2007]

• whenever a scene map S(p) is found relevant, all images q ∈ Cv(p)
are considered relevant as well



European Cities 1M dataset (EC1M)

• 1, 081 images from Barcelona annotated into 35 groups

• all geo-tagged Flickr images

17 landmark groups 18 non-landmark groups

Publicly available: http://image.ntua.gr/iva/datasets/ec1m/

http://image.ntua.gr/iva/datasets/ec1m/


European Cities 1M dataset (EC1M)

• 908, 859 distractor images from 21 European cities, excluding
Barcelona

• most depict urban scenery like the ground-truth

Publicly available: http://image.ntua.gr/iva/datasets/ec1m/

http://image.ntua.gr/iva/datasets/ec1m/


Mining statistics—single machine

view clustering:

• geo clustering takes less than 5 minutes and generates 1, 677
geo-clusters

• visual similarities calculation takes approximately 52 hours

• visual clustering takes approximately 22 minutes and generates
493, 693 visual clusters

• single images are 351, 391 of the visual clusters

scene maps:

• scene map creation takes about 5 hours

• inverted index compression: 25% [1.2Gb]



Related mining statistics

• [Chum et al. 2009] web-scale clustering: 5M images, 28 hours, single
machine (64GB RAM), popular subsets only

• [Agarwal et al. 2009] Rome in a day: 150K images, 24 hours, 500
cores

• [Frahm et al. 2010] Rome in a cloudless day: 3M images, 24 hours,
GPU

• [Heath et al. 2010] image webs: 200K images, 4,5 hours, 500 cores

• scene maps: 1M images, 58 hours, single machine (8GB RAM)



Comparisons

• baseline: bag-of-words with fast spatial matching [Philbin et al. 2007]

• QE1: iterative query expansion, re-query using the retrieved images
and merge results, 3 times iteratively

• QE2: create a scene map using the initial query’s result and re-query
once

• both QE schemes similar to total recall [Chum et al. 2007]

query timing:

Method time mAP

Baseline BoW 1.03s 0.642
QE1 20.30s 0.813
QE2 2.51s 0.686
Scene maps 1.29s 0.824



Retrieval statistics
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Location recognition

• Y. Kalantidis, G. Tolias, Y. Avrithis, M. Phinikettos, E. Spyrou, P.
Mylonas, S. Kollias. VIRaL: Visual Image Retrieval and Localization.
In Multimedia Tools and Applications, 2011 (in press).

percentage of correctly localized queries:

Method
Distance threshold

< 50m < 100m < 150m
Baseline BoW 82.5% 91.6% 94.2%
QE1 86.3% 93.5% 96.2%
QE2 86.7% 93.3% 96.5%
Scene maps 87.8% 94.2% 97.1%



Location recognition examples



http://viral.image.ntua.gr

See us tomorrow at Multimedia Grand Challenge!

http://viral.image.ntua.gr


Discussion - future work

discussion

• geo-cluster specific indexing → fast mining

• considerable increase in retrieval performance

• reduced memory requirements for the index

• can still retrieve any isolated image from the original database

future work

• perceptual summarization / browsing

• landmark recognition

• exact localization i.e. pose detection



project page
http://image.ntua.gr/iva/research/scene_maps

EC1M dataset
http://image.ntua.gr/iva/datasets/ec1m

VIRaL
http://viral.image.ntua.gr

Thank you!

http://image.ntua.gr/iva/research/scene_maps
http://image.ntua.gr/iva/datasets/ec1m
http://viral.image.ntua.gr
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