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Specific object retrieval

Problem

• Search in a large corpus of images

• Robust matching against viewpoint change, photometric variations,
occlusion and background clutter

Challenge

• Reduce memory requirements

• Leave performance unaffected or even improve
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Index space bottleneck

Bag-of-Words (BoW)

• Good performance at low cost

• Index each local feature separately

Geometry verification

• Constantly better performance than BoW

• Space requirements slightly increased

Compact representations

• Lower space requirements, e.g. Fisher vectors [Perronnin et al. 2010]

• Not compatible with geometry verification

Feature selection

• Currently only from multiple views
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Feature selection – related work

Corpus-wide, supervised (by geotag)

• Informative features [Schindler et al. 2007, Li & Kosecka 2006]

Corpus-wide, unsupervised

• Sparse PCA on vocabulary [Naikal et al. 2011]

Per image, supervised (by geotag)

• Foreground object detection [Gammeter et al. 2009]

• Scene map construction [Avrithis et al. 2010]

Per image, unsupervised

• Spatial verification of multiple views [Turcot & Lowe 2009]
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Multiple view feature selection

[Turcot & Lowe 2009]

• BoW-based retrieval system

• Spatial verification by RANSAC

• Query with all images

• Keep spatially verified features



Multiple view selection - spatial verification
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Multiple view selection - spatial verification



Multiple view selection - verified features



But how about single views?



Feature selection from single, unique views

multiple views single view [this work]



Selection from single, unique views

• Detect symmetries

• Detect repeating patterns

• Select all features participating in such patterns



Why symmetries?

Why self-similarities?



Rationale: local self-similarities are everywhere!

• Segmentation by composition [Bagon et al. 2008]

• Self-similarity descriptor [Shechtman & Irani 2007]
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Proposed method

Spatial matching

• Image with itself

• Image with mirrored counterpart

Similar to geometry verification, but

• Descriptors, not visual words

• No one-to-one correspondence constraint

• No single transformation model

We propose two methods

• Spatial self-matching (SSM)

• Hough pyramid self-matching (HPSM)
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Does feature selection affect performance?
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Idea

original original

original flipped

• Self matching: direct transformations

• Flipped matching: opposite transformations



Single correspondence hypothesis

x

y
L

g(x, y) = g(c) = [p(c)T σ(c) θ(c)]T

g(x) = [p(x)T σ(x) θ(x)]T g(y) = [p(y)T σ(y) θ(y)]T
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Self-matching: tentative correspondences

Valid pairs

Cv(X) = {(x, y) ∈ X2 : v(x, y) }

valid iff ‖g(x, y)‖ ≥ ρ

Descriptor nearest neighbors

k-nearest neighbors descriptor distance

N(x) = {y ∈ X : y ∈ N k
X(x) ∧ d(x, y) ≤ δ}

Cd(X) = {(x, y) ∈ X2 : y ∈ N(x)}

Tentative correspondences

Ct(X) = Cd(X) ∩ Cv(X)
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Spatial self-matching (SSM)

• Inspired by fast spatial matching (FSM) [Philbin et al. 2007]

• Each correspondence c ∈ C gives rise to a hypothesis h = t(c)

• Hypothesis inliers: IC(h) = {(x, y) ∈ C : ‖p(y)− hp(x)‖ < ε}
• FSM seeks best hypothesis overall, maxh{|IC(h)| : h ∈ HC(c)}
• We find hypotheses per correspondence c = (x, y)

HC(x, y) = {h ∈ t(C) : ‖p(y)− hp(x)‖ < ε}

and seek the best to define the correspondence strength:

αC(c) = max{|IC(h)| : h ∈ HC(c)}

• Verified correspondences: α(C) = {c ∈ C : αC(c) ≥ τα}
• Select features of verified correspondences
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SSM algorithm

Finally, the set of tentative correspondences of X contains
pairs of similar features that are also valid,

Ct(X) = Cd(X) ∩ Cv(X). (6)

All correspondence definitions so far refer to direct match-
ing, and will be modified accordingly for flipped matching in
section 3.3. Direct matching is illustrated in Figure 2(top),
showing a pattern of three features repeating twice while
undergoing a translation. Observe that tentative correspon-
dences, being valid, exclude ones between a feature and itself
in the two images. The two groups of three correspondences
are essentially the same, being of the form (x, y) and (y, x).
However, correspondences are not always symmetric. The
pattern could repeat three times or more, while all similarity
transformations are allowed.

3.2 Spatial self-matching
In order to detect local symmetries or repeating patterns, we
need stronger evidence than just a set of independent corre-
spondences, each based on the similarity of a single pair of
features. We follow two different approaches, both inspired
by existing methods for spatial matching between two differ-
ent images, which however we apply to self-matching within
a single image. Our first approach seeks groups of geomet-
rically verified correspondences, called inliers; it is inspired
by fast spatial matching (FSM) [25].

Given image X, each correspondence c = (x, y) ∈ Ct(X)
gives rise to a similarity transformation represented by vec-
tor g(c) defined in (2). This transformation has four de-
grees of freedom and may as well be represented by a matrix
t(c) ∈ R3×3, with

t(x, y) = t(c) =

[
M(c) p(c)
0T 1

]
. (7)

This alternative formulation is useful when representing po-
sition in homogeneous coordinates. Then, given transforma-
tion h = t(c) = t(x, y), the position p(z) ∈ R3 of z ∈ X is
transformed to hp(z), the latter standing for a matrix-vector
product.

FSM is a RANSAC-like process. Given image X and its
set of tentative correspondences C = Ct(X), each c ∈ C
defines a transformation hypothesis h = t(c) that is veri-
fied by looking for inliers IC(h) among all correspondences
(x, y) ∈ C, with

IC(h) = {(x, y) ∈ C : ‖p(y)− hp(x)‖ < ε} (8)

for h ∈ R3×3. The inlier set relies on inlier threshold ε > 0,
given in pixels. Among all hypotheses t(C) = {t(c) : c ∈ C},
FSM then seeks the hypothesis h ∈ t(C) with the highest
inlier support |IC(h)|. Here is where we differentiate: we
seek the best hypothesis per individual inlier.

In particular, for each correspondence c = (x, y) ∈ C, we
define its set of associated hypotheses HC(c) = HC(x, y) ⊆
t(C) that align c as an inlier,

HC(x, y) = {h ∈ t(C) : ‖p(y)− hp(x)‖ < ε}. (9)

We can now define the inlier strength α(c) of correspondence
c as the largest inlier support |IC(h)| over all its associated
hypotheses h ∈ HC(c),

αC(c) = max{|IC(h)| : h ∈ HC(c)}. (10)

The entire self-matching process is summarized in Al-
gorithm 1, which we will refer to as spatial self-matching

Algorithm 1: Spatial self-matching (SSM)

1 procedure α← SSM(C, t; τα)
input : correspondences C, transformations t
parameter: inlier threshold τα
output : inlier strengths α

2 for c ∈ C do . initialize
3 inlier(c)← false . mark as outlier
4 α(c)← 0 . zero strength

5 for c ∈ C do . for all hypotheses
6 if inlier(c) then continue . skip hypothesis?
7 h← t(c) . current hypothesis
8 I ← IC(h) . current inliers (8)
9 if |I| < τα then continue . verified hypothesis?

10 for c′ ∈ I do . for all inliers
11 inlier(c′)← true . mark as inlier
12 α(c′)← max(α(c′), |I|) . update strength

13 return α . inlier strengths

(SSM). The original algorithm [25] is quadratic in the num-
ber of correspondences, since all correspondences are con-
sidered as inliers to all hypotheses. To speed up the pro-
cess, we skip hypotheses arising from correspondences that
have already been counted as inliers for previous hypotheses
(line 6). We have observed that this does not affect feature
selection in practice. The process is now quadratic only in
the worst case, i.e. when no inliers are found at all, but in
practice we get significant computational savings.

Once all inlier strengths have been computed, the set of
spatially verified correspondences α(C) ⊆ C is

α(C) = {c ∈ C : αC(c) ≥ τα}, (11)

with selection threshold τα > 0. Finally, given image X
with tentative correspondences C = Ct(X), we select those
features x ∈ X that are participating in some verified corre-
spondence in α(C),

αd(X) = π1(α(C)) ∪ π2(α(C)), (12)

where, for i = 1, 2, πi(S) is the i-th projection of binary
relation S ⊆ X1 × X2, collecting the i-th element of all its
pairs,

πi(S) = {xi ∈ Xi : (x1, x2) ∈ S}. (13)

We call αd(X) the direct selection of features in X.

3.3 Flipped matching
So far, we have only considered direct similarity transfor-
mations, that is, hypotheses h with deth > 0. How about
opposite transformations with deth < 0, like reflections? In
fact, once the image is reflected, the patch of each local fea-
ture is reflected as well, and its descriptor is no longer the
same, unless the patch is symmetric itself. So reflecting the
local geometry (1) is not enough: we actually need to re-
flect the entire image and extract a new set of features and
descriptors.

Any opposite transformation will do, and we choose hor-
izontal flipping. Let Y be the local feature set extracted
from the flipped image. We assume each feature y ∈ Y has
a flipped, back-projected counterpart y′. This is the projec-
tion of y on the original image with

g(y′) = [w − p1(y) p2(y) σ(y) π − θ(y)]T, (14)



Flipped matching

• Same matching algorithm

• Flip entire image, extract new set of features & descriptors Y

• y′: back-projected counterpart of feature y ∈ Y
• Create correspondences in X × Y

Cv(X,Y ) = {(x, y) ∈ X × Y : v(x, y′)}
Cd(X,Y ) = {(x, y) ∈ X × Y : y ∈ N(x)}
Ct(X,Y ) = Cd(X,Y ) ∩ Cv(X,Y )

• Validate against direct selection

• Select features
• on original image X
• back-projected from flipped image Y
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Self-matching – example



Flipped matching – example



Selected features – example

• Selected by self-matching (magenta)

• Selected by flipped-matching
• on original image (green)
• on flipped image, back-projected (cyan)
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Hough pyramid self-matching (HPSM)

• Based on Hough pyramid matching (HPM) [Tolias & Avrithis 2011]

• No inlier threshold ε

• No inlier counting or transformation estimation

• Supports multiple, even non-rigid transformations

• Correspondence strength: geometrical consistency to other
correspondences

• Linear in the number of correspondences

However

• Strength is max-normalized

• No one-to-one mapping as in original HPM
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Hough pyramid self-matching
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Hough pyramid self-matching
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Hough pyramid self-matching
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HPSM algorithm

1 procedure β ← HPSM(C,L)
input : correspondences C, levels L
output: strengths β

2 begin
3 B ←Partition(L) . partition space in L levels
4 for c ∈ C do β(c)← 0 . initialize strengths
5 HPSM-rec(β,C, L− 1, B) . recurse at top
6 return β/max(β) . normalize

7 procedure HPSM-rec(β,C, `, B)
in/out : strengths β
input : correspondences C, level `, partition map B

8 begin
9 if ` < 0 then return

10 for b ∈ B` do F (b)← ∅ . initialize histogram
11 for c ∈ C do . populate histogram
12 F (q`(c))← F (q`(c)) ∪ c . . . . by quantizing

13 for b ∈ B` do
14 F ← F (b) . correspondences in b
15 if |F | < 2 then continue . exclude singles
16 HPSM-rec(β, F, `− 1, B) . recurse down
17 if ` = L− 1 then m← 2 else m← 1
18 for c ∈ F do . update strengths in b
19 β(c)← β(c) + 2−`m|F |



Hough pyramid self-matching – example

correspondences in a single bin at level 0



Hough pyramid self-matching – example

all correspondences (red: strongest; yellow: weakest)



Selection examples
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SymCity dataset

• 953 annotated photos, 299 groups

• Semi-automatic generation of image clusters of up to 4 images

• One single image from each group in the database

• Remaining 645 used as queries



SSM vs HPSM – 100K distractors used
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SSM vs HPSM – 100K distractors used
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HPSM tuning experiment

k 1 2 3 4 5

τβ = 0.4 0.545 0.566 0.569 0.566 0.568
τβ = 0.6 0.522 0.538 0.550 0.551 0.547
τβ = 0.8 0.484 0.511 0.515 0.524 0.529



Large scale experiment – distractors
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Large scale experiment – memory ratio
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Future work

• Go at larger scale – outperform full set?

• Combine both multi-view selection and our method in a single
retrieval system

• Use verified correspondences as feature tracks for vocabulary learning
(visual synonyms)

• Use in other problems where symmetries and pattern mining are
needed - HPSM runs at 16ms on average



Update

• Local symmetry feature detection [Hauagge & Snavely, CVPR 2012]

• Self-similar sketch [Vedaldi & Zisserman, ECCV 2012]



SymCity page:
http://image.ntua.gr/iva/research/symcity

Thank you!

http://image.ntua.gr/iva/research/symcity
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