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Specific object retrieval

Problem

e Search in a large corpus of images

e Robust matching against viewpoint change, photometric variations,
occlusion and background clutter
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Problem
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e Robust matching against viewpoint change, photometric variations,
occlusion and background clutter

Challenge
e Reduce memory requirements

o Leave performance unaffected or even improve
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Index space bottleneck

Bag-of-Words (BoW)
e Good performance at low cost
o Index each local feature separately
Geometry verification
o Constantly better performance than BoW
e Space requirements slightly increased
Compact representations
o Lower space requirements, e.g. Fisher vectors [Perronnin et al. 2010]
e Not compatible with geometry verification
Feature selection

e Currently only from multiple views



Feature selection — related work

Corpus-wide, supervised (by geotag)

e Informative features [Schindler et al. 2007, Li & Kosecka 2006]
Corpus-wide, unsupervised

e Sparse PCA on vocabulary [Naikal et al. 2011]



Feature selection — related work

Corpus-wide, supervised (by geotag)
e Informative features [Schindler et al. 2007, Li & Kosecka 2006]
Corpus-wide, unsupervised
e Sparse PCA on vocabulary [Naikal et al. 2011]
Per image, supervised (by geotag)
» Foreground object detection [Gammeter et al. 2009]
¢ Scene map construction [Avrithis et al. 2010]
Per image, unsupervised
e Spatial verification of multiple views [Turcot & Lowe 2009]



Multiple view feature selection

[Turcot & Lowe 2009]
o BoW-based retrieval system
o Spatial verification by RANSAC

e Query with all images

o Keep spatially verified features




Multiple view selection - spatial verification
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Multiple view selection - spatial verification




Multiple view selection - spatial verification




Multiple view selection - verified features




But how about single views?



Feature selection from single, unique views

multiple views single view [this work]



Selection from single, unique views

e Detect symmetries
o Detect repeating patterns

o Select all features participating in such patterns



Why symmetries?

Why self-similarities?



Rationale: local self-similarities are everywhere!

» Segmentation by composition [Bagon et al. 2008]
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Proposed method

Spatial matching
e Image with itself
e Image with mirrored counterpart
Similar to geometry verification, but
o Descriptors, not visual words
e No one-to-one correspondence constraint
¢ No single transformation model
We propose two methods
e Spatial self-matching (SSM)
¢ Hough pyramid self-matching (HPSM)



Does feature selection affect performance?



Does it?

BoW tentative correspondences

Full feature set




Does it?

BoW tentative correspondences

Full feature set

15% selected
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Feature selection: solution 1
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A
original original
e o

original flipped

e Self matching: direct transformations

e Flipped matching: opposite transformations
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Self-matching: tentative correspondences

Valid pairs
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Valid pairs
Cv(X) = {(xay) € X2 : ’U((L’,y) }

valid iff [lg(, y)| > p )

Descriptor nearest neighbors

f descriptor distance
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Self-matching: tentative correspondences

Valid pairs
Co(X) = {(z,y) € X : v(z,y) }

valid iff [|g(z, y)|| = p)

Descriptor nearest neighbors

k-nearest neighbors _\ f descriptor distance

N(@)={ye X:ye N§(z) A d(z,y) <5}
Ca(X) = {(z,y) € X* 1y € N(x)}

Tentative correspondences

Ci(X) = Ca(X) N Cy(X)



Spatial self-matching (SSM)

Inspired by fast spatial matching (FSM) [Philbin et al. 2007]
Each correspondence ¢ € C gives rise to a hypothesis h = t(c)
Hypothesis inliers: Ic(h) = {(z,y) € C : ||p(y) — hp(2)| < €}
FSM seeks best hypothesis overall, max,{|Ic(h)|: h € Hc(c)}



Spatial self-matching (SSM)

Inspired by fast spatial matching (FSM) [Philbin et al. 2007]
Each correspondence ¢ € C gives rise to a hypothesis h = t(c)
Hypothesis inliers: Ic(h) = {(z,y) € C : ||p(y) — hp(2)| < €}
FSM seeks best hypothesis overall, max,{|Ic(h)|: h € Hc(c)}

We find hypotheses per correspondence ¢ = (x,y)
Ho(w,y) = {h € 4C) : [p(y) — hp(a)]| < e}
and seek the best to define the correspondence strength:
ac(c) = max{|Ic(h)| : h € He(c)}

Verified correspondences: a(C) = {c € C : ac(c) > 74}

Select features of verified correspondences



SSM algorithm

> initialize
> mark as outlier
> zero strength

> for all hypotheses

> skip hypothesis?

> current hypothesis
> current inliers (8)
> verified hypothesis?
> for all inliers

> mark as inlier

> update strength

procedure « + SSM(C,t;74)
input : correspondences C, transformations ¢
parameter: inlier threshold 7,
output : inlier strengths a
for ce C do

inlier(c) «— FALSE

alc) <0
for c € C do

if inlier(c) then continue

h + t(c)

I+ Ic(h)

if |I| < 7o then continue

for ¢ € I do

inlier(c') < TRUE
L a(c') + max(a(c), [I|)

return «

> inlier strengths



Flipped matching

Same matching algorithm

Flip entire image, extract new set of features & descriptors Y
y": back-projected counterpart of feature y € Y

Create correspondences in X X Y

Co(X)Y) = {(z,y) e X xY :v(z,y)}
Cy(X,Y) {(z,y) e X XY :y € N(x)}
Ci(X,Y) = Cu(X,Y)NC,(X,Y)



Flipped matching

Same matching algorithm

Flip entire image, extract new set of features & descriptors Y
y": back-projected counterpart of feature y € Y

Create correspondences in X X Y

Co(X)Y) = {(z,y) e X xY :v(z,y)}
Cy(X,Y) {(z,y) e X XY :y € N(x)}
Ci(X,Y) = Cu(X,Y)NC,(X,Y)

Validate against direct selection
Select features
e on original image X
o back-projected from flipped image Y



Self-matching — example




Flipped matching — example




Selected features — example

o Selected by self-matching (magenta)
e Selected by flipped-matching

e on original image (green)
e on flipped image, back-projected (cyan)
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Feature selection: solution 2



Hough pyramid self-matching (HPSM)

Based on Hough pyramid matching (HPM) [Tolias & Avrithis 2011]
No inlier threshold

No inlier counting or transformation estimation

Supports multiple, even non-rigid transformations

Correspondence strength: geometrical consistency to other
correspondences

Linear in the number of correspondences



Hough pyramid self-matching (HPSM)

 Based on Hough pyramid matching (HPM) [Tolias & Avrithis 2011]
e No inlier threshold ¢

¢ No inlier counting or transformation estimation

e Supports multiple, even non-rigid transformations

e Correspondence strength: geometrical consistency to other
correspondences

e Linear in the number of correspondences

However
e Strength is max-normalized

¢ No one-to-one mapping as in original HPM



Hough pyramid self-matching
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Hough pyramid self-matching
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Hough pyramid self-matching
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HPSM algorithm

procedure 3 < HPSM(C, L)
input : correspondences C, levels L
output: strengths 8

begin
B «PARTITION(L) > partition space in L levels
for c € C do B(c) + 0 > initialize strengths
HPSM-rec(B,C,L — 1, B) > recurse at top
return 8/ max(3) > normalize

procedure HPSM-rEC(S, C, ¢, B)
in/out : strengths 8
input : correspondences C, level ¢, partition map B

begin

if £ < 0 then return

for b € By do F(b) + 0 > initialize histogram

for ce C do > populate histogram

L F(qi(c)) < F(gqe(e))Uc > ... by quantizing

for b € By do
F + F(b) > correspondences in b
if |F'| < 2 then continue > exclude singles
HPSM-REC(B, F,£ — 1, B) > recurse down
if {=L —1then m + 2else m <1
for c € F do > update strengths in b

L B(e) « B(e) + 27 m|F|




Hough pyramid self-matching — example

correspondences in a single bin at level 0



Hough pyramid self-matching — example

all correspondences (red: strongest; . weakest)



Selection examples
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Experiments



SymCity dataset

e 953 annotated photos, 299 groups

o Semi-automatic generation of image clusters of up to 4 images

One single image from each group in the database

Remaining 645 used as queries



mAP

SSM vs HPSM - 100K distractors used
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running time (ms)

SSM vs HPSM - 100K distractors used
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HPSM tuning experiment

k[ 1 2 3 4 5

73 =0.4 | 0.545 0.566 0.569 0.566 0.568
73 =0.6 | 0.522 0.538 0.550 0.551 0.547
73 =0.8 | 0.484 0511 0.515 0.524 0.529




mAP
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Large scale experiment — distractors
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mAP

Large scale experiment — memory ratio
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Future work

Go at larger scale — outperform full set?

Combine both multi-view selection and our method in a single
retrieval system

Use verified correspondences as feature tracks for vocabulary learning
(visual synonyms)

Use in other problems where symmetries and pattern mining are
needed - HPSM runs at 16ms on average



Update

o Local symmetry feature detection [Hauagge & Snavely, CVPR 2012]




SymCity page:

http://image.ntua.gr/iva/research/symcity

Thank youl!


http://image.ntua.gr/iva/research/symcity
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