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Local features

» Sparse image representation

» High distinctiveness when combined with local descriptors

» Exploited by many computer vision applications
(stereo matching, object detection, image retrieval, etc.)




WaSH feature detector
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input edges features

> Weighted a-shapes detector starts from sampled image edges
(binary) [Varytimidis et al. '12]
» Uniform sampling along edges
> Intuitively, image edges are interpretable and repeatable
» Nevertheless, automatically extracted binary edges can be noisy



WaSH feature detector

» Triangulation of samples

» Hierarchy of triangles and edges (filtration) based on size
> a-shapes are a generalization of the Convex Hull

» Each instance of the filtration corresponds to an « value
» a-shapes are nested subsets of the triangulation

» Connected components of the a-shapes are candidate image
features

Weighted Alpha Shapes. Triangulation




Uniform sampling along binary image edges
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» Binary edges can be noisy
> Fixed step s along the edge
> Need for fine-tuning



Proposed Image sampling

Novel image sampling that:

» fires mainly on object boundaries

> is parameter free

» sampling density is based on local image properties
Combined with WaSH, local features:

» capture regions with different levels of detail

> better follow object boundaries
> 2727222222227



Image dithering
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Dithering uses error—diffusion to minimize quantization error

v

Results are visually similar to the original

» Binary images can be interpreted as sampled points

v

Functions other than image intensity may also be used

grayscale dithered



Error diffusion algorithm

» Floyd—Steinberg algorithm [Floyd and Steinberg '76]

» Fast — only one pass over the image pixels
» Visually appealing results
» Easy to implement
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Gradient-based error diffusion
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Hessian-based error diffusion
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Improved local features

Uniform sampling (WaSH)




Improved local features

Uniform sampling (WaSH) Proposed sampling

binary edges Gradient Hessian
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Improved local features

Uniform sampling (WaSH) Proposed sampling
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Improved local features

Uniform sampling (WaSH) Proposed sampling
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Hessian

8.

Hessian

fixed density variable density



Improved local features

Uniform sampling (WaSH) Proposed sampling
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Gradient Hessian

Gradfent

fewer noisy points



Improved local features

Uniform sampling (

WaSH) Proposed sampling



Examples

> Input image

» Object consists of well-defined parts
» Object parts are textured
> 777777



Examples

» Image function to sample
L /

N ]
gradient Hessian




Examples

» Image function to sample

» Sample points
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Examples

» Sample points and triangulation
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Examples

» Sample points and triangulation

uniform

gradient
» WaSH detected features

Hessian
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Evaluation — Repeatability, matching score

» Metrics and dataset from [Mikolajczyk et al. '05]

» VLBenchmarks evaluation framework [Lenc et al. '11]

WaSH (unlform) WaSH (gradlent) WaSH (Hessian)



Evaluation

— Repeatability, matching score

HessAffine —— MSER —»— WaSH —— WaSH-Hess —— WaSH-grad
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Evaluation

— Repeatability, matching score

HessAffine —&— MSER —«— WaSH —+— WaSH-Hess —— WaSH-grad ‘
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Evaluation — Repeatability, matching score

Average

HessAffine —o— MSER —— WaSH —+— WaSH-Hess —— WaSH-grad ‘
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Evaluation — Large scale image retrieval

v

Oxford 5K dataset [Philbin et al. 07|
SIFT descriptor for all detectors (except SURF)

v

> approximate k-means for clustering

v

fast spatial matching for results verification




Evaluation — Large scale image retrieval

detector features Bag-of-Words (mAP) ReRanking (mAP)
(x10%) 50K 100K | 200K 50K 100K | 200K
HessAff 29.02 0.483 | 0.539 | 0.573 | 0.518 | 0.577 | 0.607
MSER 13.33 0.487 0.534 0.565 0.519 0.569 0.595
SIFT 11.13 0.422 0.465 0.495 0.441 0.486 0.517
SURF 6.84 0.465 | 0.526 | 0.574 | 0.509 | 0.573 | 0.603
WaSH 7.19 0.529 | 0.569 | 0.590 | 0.537 | 0.569 | 0.585
WaSH, grad 7.63 0.531 | 0.580 | 0.605 | 0.543 | 0.578 | 0.609
WaSH, Hess 7.29 0.518 | 0.553 | 0.582 | 0.511 0.557 | 0.584




Thank you!
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