Improving local features by dithering-based image sampling

Christos Varytimidis, Konstantinos Rapantzikos, Yannis Avrithis and Stefanos Kollias

National Technical University of Athens

ACCV 2014

Outline

Introduction

Local features $W\alpha SH$ feature detector Image sampling

Proposed image sampling

Image dithering Gradient-based error diffusion Hessian-based error diffusion Examples

Experimental evaluation

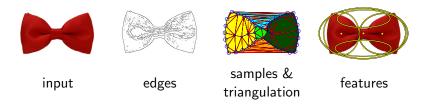
Image matching Large scale image retrieval

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Local features

- Sparse image representation
- High distinctiveness when combined with local descriptors
- Exploited by many computer vision applications (stereo matching, object detection, image retrieval, etc.)

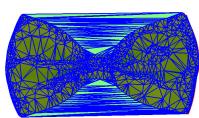
$W\alpha SH$ feature detector



- Weighted α-shapes detector starts from sampled image edges (binary) [Varytimidis et al. '12]
- Uniform sampling along edges
- Intuitively, image edges are interpretable and repeatable
 - Nevertheless, automatically extracted binary edges can be noisy

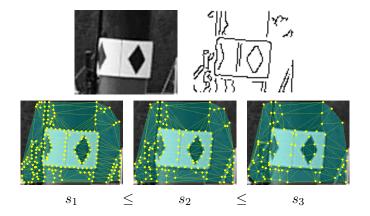
$W\alpha SH$ feature detector

- Triangulation of samples
- Hierarchy of triangles and edges (*filtration*) based on size
- α-shapes are a generalization of the Convex Hull
- \blacktriangleright Each instance of the filtration corresponds to an α value
- α -shapes are nested subsets of the triangulation
- Connected components of the α-shapes are candidate image features



Weighted Alpha Shapes. Triangulation

Uniform sampling along binary image edges



э

イロト イポト イヨト イヨト

- Binary edges can be noisy
- Fixed step s along the edge
 - Need for fine-tuning

Proposed Image sampling

Novel image sampling that:

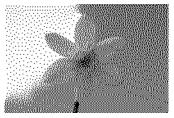
- fires mainly on object boundaries
- is parameter free
- sampling density is based on local image properties

Combined with W α SH, local features:

- capture regions with different levels of detail
- better follow object boundaries

Image dithering

- Dithering uses error-diffusion to minimize quantization error
- Results are visually similar to the original
- Binary images can be interpreted as sampled points
- Functions other than image intensity may also be used

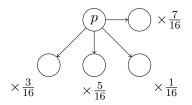


dithered

Error diffusion algorithm

Floyd–Steinberg algorithm [Floyd and Steinberg '76]

- Fast only one pass over the image pixels
- Visually appealing results
- Easy to implement



Gradient-based error diffusion

- $G = \|\nabla g(\sigma) * I\|$, gradient strength
- $\hat{G}(x,y)$, normalized to [0,1]
- $\blacktriangleright \ s(x,y) = \hat{G}(x,y)^{\gamma}, \gamma > 0$
- error diffusion step

input

 \hat{G}

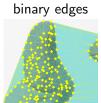
sampling

Hessian-based error diffusion

- $\lambda_{\max}(x,y)$, largest eigenvalue at (x,y) of Hessian
- $\hat{\lambda}_{\max}(x,y)$, normalized to [0,1]
- $s(x,y) = \hat{\lambda}_{\max}(x,y)^{\gamma}$
- error diffusion step

Uniform sampling (W α SH)

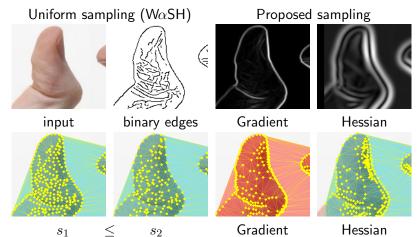
input



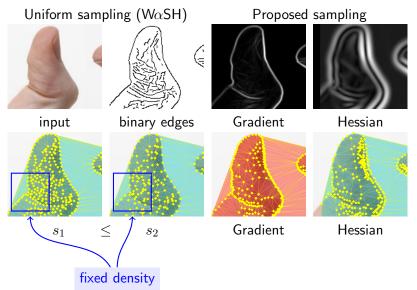
 $s_1 \leq$

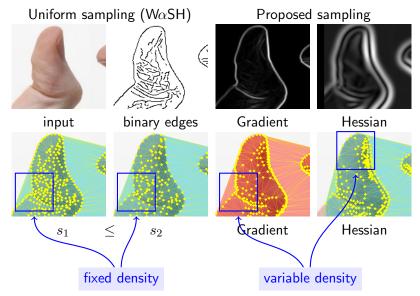
 s_2

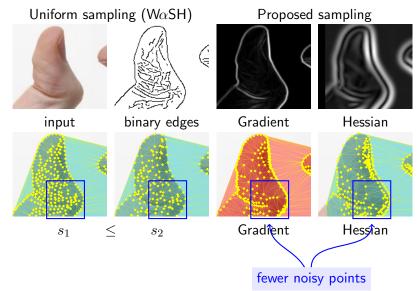
(日) (四) (王) (日) (日) (日)



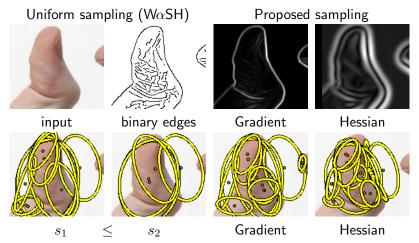
▲□▶▲□▶★□▶★□▶ = のへの







◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇



Input image

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Object consists of well–defined parts
- Object parts are textured
- ??????

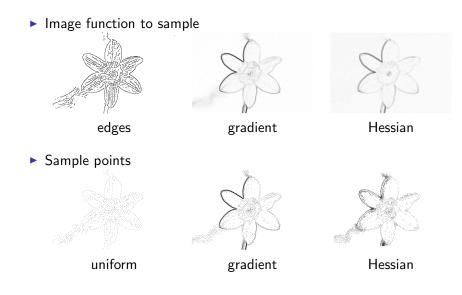
Image function to sample

edges

gradient

Hessian

(日)、



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Sample points and triangulation

uniform

gradient

Hessian

Sample points and triangulation

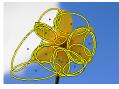
uniform

gradient

► WαSH detected features

uniform

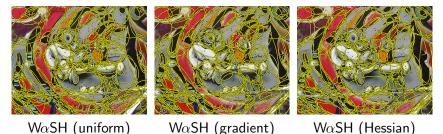
gradient



Hessian

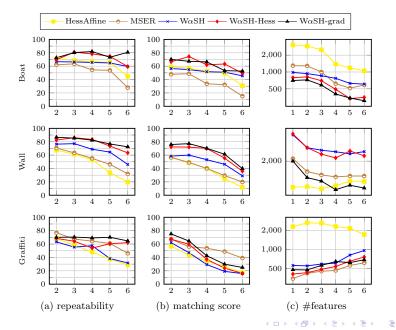
Evaluation - Repeatability, matching score

- Metrics and dataset from [Mikolajczyk et al. '05]
- ▶ VLBenchmarks evaluation framework [Lenc et al. '11]



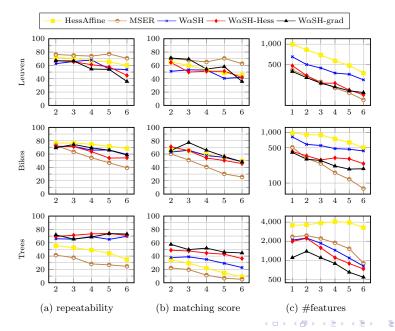
★□> ★圖> ★目> ★目> 目 のQQ

Evaluation - Repeatability, matching score

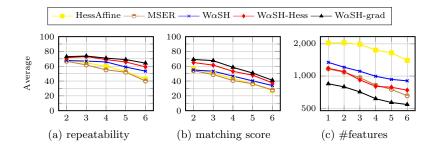


Sac

Evaluation - Repeatability, matching score



Evaluation – Repeatability, matching score



▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ()~

Evaluation – Large scale image retrieval

- Oxford 5K dataset [Philbin et al. '07]
- SIFT descriptor for all detectors (except SURF)
- approximate k-means for clustering
- fast spatial matching for results verification

(日)

Evaluation – Large scale image retrieval

detector	features	Bag-of-Words (mAP)			ReRanking (mAP)		
	$(\times 10^{6})$	50K	100K	200K	50K	100K	200K
HessAff	29.02	0.483	0.539	0.573	0.518	0.577	0.607
MSER	13.33	0.487	0.534	0.565	0.519	0.569	0.595
SIFT	11.13	0.422	0.465	0.495	0.441	0.486	0.517
SURF	6.84	0.465	0.526	0.574	0.509	0.573	0.603
WαSH	7.19	0.529	0.569	0.590	0.537	0.569	0.585
W α SH, grad	7.63	0.531	0.580	0.605	0.543	0.578	0.609
$W\alpha SH$, Hess	7.29	0.518	0.553	0.582	0.511	0.557	0.584

Thank you!

