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Large-scale clustering

problem formulation

• given a dataset X of n points in Rd, find k cluster centroids
minimizing distortion (as in k-means)

k-means iteration

• assignment step: for every point, find closest centroid

• update step: given point assignments, update centroids



related ideas & challenges

approximations & speed-ups

• the assignment step is the bottleneck

• approximate k-means [Philbin et al. CVPR, 2007]: use ANN to speed-up
assignment step – all data points needed in memory

• binary k-means [Gong et al. CVPR, 2015]: binarize points and centroids –
data now in compressed form, search in Hamming space



Ranked retrieval
[Broder et al. WSDM, 2014]

inverse search

• data remain fixed across iterations: index points, search for centroids

• dataset required in memory
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Abstract

Large scale duplicate detection, clustering and mining
of documents or images has been conventionally treated
with seed detection via hashing, followed by seed growing
heuristics using fast search. Principled clustering meth-
ods, especially kernelized and spectral ones, have higher
complexity and are difficult to scale above millions. Under
the assumption of documents or images embedded in Eu-
clidean space, we revisit recent advances in approximate
k-means variants, and borrow their best ingredients to in-
troduce a new one, inverted-quantized k-means (IQ-means).
Key underlying concepts are quantization of data points and
multi-index based inverted search from centroids to cells.
Its quantization is a form of hashing and analogous to seed
detection, while its updates are analogous to seed growing,
yet principled in the sense of distortion minimization. We
further design a dynamic variant that is able to determine
the number of clusters k in a single run at nearly zero ad-
ditional cost. Combined with powerful deep learned rep-
resentations, we achieve clustering of a 100 million image
collection on a single machine in less than one hour.

1. Introduction

NEARLY two decades ago [6], discovering duplicates
among millions of web documents was the motiva-

tion behind one of the first locality sensitive hashing (LSH)
schemes, later known as MinHash [7]. The same method
was subsequently used to select seeds which, followed by
efficient search and spatial verification, would lead to clus-
tering and mining in collections of up to 105 images [10].

Many approaches followed, but problems have remained
such as failing to discover infrequent documents, seed
growing relying on heuristics, or more principled methods
like medoid shift still being too costly to scale up [38].
Pairwise matching remains a problem that is inherently
quadratic in the number of documents, and approximate
nearest neighbor (ANN) search has been employed to help.
Approximate k-means (AKM) is one such attempt [26],
where each data point is assigned to the nearest centroid
by ANN search. Binary k-means (BKM) [14] is another

(a) Ranked retrieval [8] (b) DRVQ [1]

(c) EGM [2] (d) This work: IQ-means

Figure 1. Different k-means variants. ( ) Data points; ( ) cen-
troids; ( ) search range; ( ) estimated cluster extent, used to dy-
namically determine k.

recent alternative where points and centroids are binarized
and ANN search follows in Hamming space. But in this
work we focus our attention on the inverse process.

Observing that data points remain fixed during k-means
iterations, ranked retrieval [8] chooses to search for near-
est data points using centroids as queries, as illustrated in
Fig. 1a. This choice dispenses the need to rebuild an in-
dex at each iteration, and requires less queries because cen-
troids are naturally fewer than data points. Points are ex-
amined more than once and not all points are assigned to
centroids; it is observed however that distortion is not influ-
enced much. If range queries were used, this method would
be very similar to mean shift [9], except that centroid dis-
placement is not independent here.

Dimensionality-recursive vector quantization (DRVQ)
[1] relies on the same inverted centroid-to-data queries.



Dimensionality-recursive vector quantization
[Avrithis, ICCV, 2013]

data compression & inverse search

• quantize points to centroids using inverted multi-index [Babenko &

Lempitsky, 2012], adopt inverse search
• search is a propagation on a 2d-grid, joint priority queue
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Expanding Gaussian mixtures
[Avrithis & Kalantidis, ECCV, 2012]

dynamic estimation of the number of centroids

• probabilistic model that allows estimation of cluster overlap

• point-to-centroid search & centroid-to-centroid search
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Inverted Quantized k-means (IQ-means)

• subspace quantization & search via multi-index

• centroid-to-cell search, independent queries per centroid

• dynamic estimation of k at nearly zero cost
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Web-scale image clustering
[Chum & Matas, PAMI, 2010]

• detect seed images using minHash

• grow seeds via retrieval & expansion ⇒ 100K images
2 Ondřej Chum and Jiřı́ Matas

Fig. 1. Visualization of a part of a cluster of spatially related images automatically discovered from a database of 100K images.
Only part of the cluster is shown. Overall, there are 113 images in the cluster, all correctly assigned. A sample of geometrically
verified correspondences is depicted as links between the images. Note that the images show the tower from opposite sides.

The above mentioned process starts with an image provided or selected by the user. However, 3D registration is
still a slow process. In general, it is not possible to do it online, and an immediate response to the user requires that
3D reconstruction is already available, computed off-line. The clustering method proposed in the paper is a suitable
back-end for such a system, as it discovers sufficiently large sets of overlapping images suitable for automatic recon-
struction. Moreover, it outputs inter-image correspondences that may bootstrap the 3D scene reconstruction process.
Availability of sufficient number of images is essential for the 3D reconstruction, and almost all sets that are usable
for 3D reconstruction have a size where our method retrieves the cluster almost certainly.

The rest of the paper is structured as follows. Section 2 reviews the work on unsupervised object and scene dis-
covery, Section 3 describes the use of min-Hash for data mining purposes. In Section 4 the method is experimentally
verified on real image databases.

2 Related work on unsupervised object and scene discovery

The problem of matching (organization) of an unordered image set was first addressed by Schaffalitzky and Zisserman
in [10]. Their objective was first automatic recovery of geometric relations between images from a spatially related
set (of tens of images) and then 3D reconstruction. We are interested in a similar problem, but also in discovery of
multiple such sets in databases with several orders of magnitude higher number of images.

Recently, the majority of image retrieval systems adopt the bag-of-words approach [11], which we also follow.
First, regions of interest are detected [12] and described by an invariant descriptor [13]. The descriptors are then
vector quantized into a vocabulary of visual words [11, 5, 6].

The approach closest to ours is [14] by Sivic and Zisserman whose objective is unsupervised discovery of multiple
instances of particular objects in feature films. Object hypotheses are instantiated on neighbourhoods centered around
regions of interest. The neighbourhoods include a predefined number of other regions and the hypothesized object is
represented by a fixed number of visual words describing the regions. Each hypothesized object is used as a query
against the database consisting of key frames of the film. To reduce the number of similarity evaluations, which each
requires counting the number of common visual words, only neighbourhoods centered at the same visual word are
compared.

The method requires
Pw

i=1 d2
i similarity evaluations, where w is the size of vocabulary and di is the number of

regions assigned to i-th visual word. Let D be the number of documents and t the average number of features in an

revisiting with IQ-means

• cluster 100M images in less than an hour on a single machine
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Quantization

compressing the dataset

• express Rd as the Cartesian product of two orthogonal subspaces, S1 × S2,
of d/2 dimensions each – subject to optimization [Ge et al. , 2013]

• train two sub-codebooks U1, U2 of size s independently on projections of
sample data on S1, S2

• codebook U = U1 × U2 contains s× s cells – can be seen as a discrete two
dimensional grid [Babenko & Lempitsky, 2012]

• vector x = (x1, x2) can be quantized to a cell using quantizer
q(x) = (q1(x1), q2(x2)), where q`(x`) = argminu`∈U` ‖x` − u`‖ for ` = 1, 2



Representation

discarding original data

• for cell uα, probability pα = |Xα|/n, with Xα = {x ∈ X : q(x) = uα}
• the mean µα = 1

|Xα|
∑
x∈Xα x of all points in Xα is kept for each cell uα

• cells with their sample mean µα and probability pα replace the original data

• create an index with cell means



Update step

moving the centroids

• for all cm ∈ C:

cm ←
1

Pm

∑

α∈Am
pαµα,

where:

• Am = {α ∈ I : a(uα) = m}: the indices of all cells assigned to cm
during the assignment step

• Pm =
∑
α∈Am pα: the proportion of points assigned to centroid cm,

with a(u) = argmincm∈C ‖u− cm‖



Assignment step

multi-index search independently for every centroid

• for each centroid ci, the w nearest sub-codewords are found in U1, U2, and
ordered by ascending distance to ci, for i = 1, 2

• a w × w search block is thus determined for ci

• the multi-sequence [Babenko & Lempitsky, 2012] algorithm is used for
traversing the cells in the search block

• termination: count the total number of underlying points in visited cells, and
terminates when this reaches a target number T



Centroid-to-cell search

tical above a few million points. There are several methods
for estimating k even dynamically like component annihila-
tion [12], DP-Means [21] and EGM [2]; here we choose to
integrate our approach with EGM, which comes as a natural
extension at nearly zero cost.

Parallelism has widely been utilized for large scale clus-
tering [24, 15], while algorithms for distributed systems ex-
ist for many popular clustering algorithms like Parallel k-
means [39] or parallel DB-SCAN [25]. We are however
interested in large scale clustering without the need of a dis-
tributed grid. We show that we are able to provide an effi-
cient k-means approximation that can cluster 100M images
in less than an hour on a single machine, while a distributed
implementation of standard k-means on the same dataset
using 300 machines on the grid takes over one day.

3. Inverted-quantized k-means (IQ-means)

Representation. We are given a dataset X of n points in
Rd, and the problem is to find k cluster centroids minimiz-
ing distortion as in k-means. IQ-M assumes the same repre-
sentation and codebook building as in multi-indexing [4]. In
particular, assuming d is even, Rd is expressed as the Carte-
sian product of two orthogonal subspaces, S1 ⇥ S2, of d/2
dimensions each. Although this decomposition is subject to
optimization [13], which we do apply in our experiments,
we assume here the simplest decomposition whereby each
vector x is written as a tuple (x1, x2) consisting of two sub-
vectors x1, x2 2 Rd/2.

We also assume there are two sub-codebooks U1, U2

trained independently on projections of sample data on
S1, S2 respectively. Each U ` contains s sub-codewords,
partitioning S` into s disjoint subsets for ` = 1, 2. Then,
codebook U = U1⇥U2 contains s⇥ s codewords and par-
titions Rd into s ⇥ s cells. We thus refer to each codeword
u 2 U as a cell, while U can be seen as a discrete two di-
mensional grid. Given sub-codewords u1

i 2 U1, u2
j 2 U2

with i, j 2 [s] = {1, . . . , s}, we represent cell (u1
i , u

2
j ) 2 U

by the multi-index notation u↵ with ↵ being the integer tu-
ple (i, j) 2 I = [s] ⇥ [s]. Every point x can be quan-
tized to a cell q(x) = (q1(x1), q2(x2)), where q`(x`) =
arg minu`2U` kx` � u`k is the nearest sub-codeword of U `

to projection x` of x on subspace S` for ` = 1, 2.

Update step. Next, similarly to DRVQ [1], all points of
X are quantized on the grid and a discrete two-dimensional
distribution p of points over cells is constructed. In particu-
lar, for each cell u↵, probability p↵ = |X↵|/n measures
the empirical frequency of points falling into u↵, where
X↵ = {x 2 X : q(x) = u↵}. Further, the mean
µ↵ = 1

|X↵|
P

x2X↵
x of all points in X↵ is kept for each

cell u↵. At this point, dataset X may be discarded. An
arbitrary initial set C of k centroids is assumed.

As in all k-means variants, the algorithm then alternates
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between an assignment and an update step, where the latter
is simply given by weighted average

cm  
1

Pm

X

↵2Am

p↵µ↵, (1)

for all centroids cm 2 C. Here, Pm =
P

↵2Am
p↵

is the proportion of points assigned to centroid cm and
Am = {↵ 2 I : a(u↵) = m} contains the indices of all
cells assigned to cm during the assignment step, where

a(u) = arg min
cm2C

ku� cmk (2)

is the index to the nearest centroid c to cell u 2 U . In other
words, cells c↵ with their sample mean µ↵ and probability
p↵ have completely replaced the original data. Still, assign-
ment (2) of cells to centroids is the bottleneck.

Assignment step. Here is where fast search is required. Al-
though assignment rule (2) implies a cell-to-centroid search,
we follow the inverse process as explained in section 1. As
in ranked retrieval [8], this process takes the form of a set of
individual queries for nearest cells, one for each centroid.
Search follows a multi-indexing approach in this work, in
particular using the multi-sequence algorithm [4].

Fig. 2a illustrates part of the grid, with two centroids
c1, c2 and the set of nearest cells to each centroid, say
V1, V2, in different colors. Recall that rows and columns
of the grid correspond to sub-codewords in U1, U2. These
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a(u) = arg min
cm2C

ku� cmk (2)

is the index to the nearest centroid c to cell u 2 U . In other
words, cells c↵ with their sample mean µ↵ and probability
p↵ have completely replaced the original data. Still, assign-
ment (2) of cells to centroids is the bottleneck.

Assignment step. Here is where fast search is required. Al-
though assignment rule (2) implies a cell-to-centroid search,
we follow the inverse process as explained in section 1. As
in ranked retrieval [8], this process takes the form of a set of
individual queries for nearest cells, one for each centroid.
Search follows a multi-indexing approach in this work, in
particular using the multi-sequence algorithm [4].

Fig. 2a illustrates part of the grid, with two centroids
c1, c2 and the set of nearest cells to each centroid, say
V1, V2, in different colors. Recall that rows and columns
of the grid correspond to sub-codewords in U1, U2. These

search blocks for c1, c2



Dynamic estimation of k

centroid-to-centroid search

• record nearest centroid for each cell

• during search: keep list of neighboring centroids (i.e. other centroids that
have visited the same cells – no extra cost)

centroid modeling

• model the distribution of points assigned to cluster cm by an isotropic
normal density N (x|cm, σm) as in EGM [Avrithis & Kalantidis, ECCV, 2012]

σ2
m ←

1

Pm

∑

α∈Am
pα‖µα − cm‖2.

centroid deletion

• iterate over all clusters m in descending order of population Pm

• for every centroid, compute overlap with neighboring centroids

• purge clusters that overlap too much with all clusters kept so far
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Experiments

datasets

• SIFT1M [Jegou et al. , PAMI, 2011]: 1M 128-dimensional SIFT vectors, and a
learning set of 100K vectors

• Paris [Wayand et al. , RMLE, 2010]: 500K images from Paris, ground truth of
79 landmark clusters covering 94K dataset images

• Yahoo Flickr Creative Commons 100M (YFCC100M) [Thomee et al. , CACM,

2015]: 100 million public Flickr images with a creative commons license

image representation

• AlexNet CNN fc7 features, PCA to 128 dimensions, optimized subspace
decomposition [Ge et al. , 2013]

evaluation metrics

• distortion, timing, precision-recall (Paris)

• YFCC100M: cluster precision (or purity) on a noisy set of image classification
labels (percentage of images that share top class label)



Results: SIFT1M
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Figure 4. Average distortion and total time for 20 iterations on SIFT1M for varying number of clusters k. Time for IQ-means includes
encoding of data points that is constant in k, but not codebook learning, which is performed on a different dataset.
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Figure 5. Average distortion and total time for 20 iterations on SIFT1M for k = 104 and varying number of data points n. Time for
IQ-means includes encoding of data points that is linear in n, but not codebook learning.
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Figure 6. Precision vs. recall for varying k on Paris.

(nearly three) orders of magnitude compared to k-means,
while the loss in distortion is reasonable.

Given the existing ground truth of Paris dataset, Fig. 6
further evaluates IQ-means and dynamic IQ-means against
other methods on a precision-recall diagram. Due to quan-
tization, it appears that our methods do not reach the upper-
left extreme of high precision and low recall, which can be
improved with a finer grid at higher cost. Otherwise, all
methods are comparable regardless of their cost. Of course,
none of these methods is anywhere near in performance to
more expensive dedicated methods like iconoid shift [38].

CKM DKM D-IQ-M

k/k0 100000 100000 85742
time (s) 13068.1 7920.0 140.6

precision 0.474 0.616 0.550
Table 2. Time per iteration and average precision for cell-k-means,
dynamic IQ-means and distributed k-means on YFCC100M with
initial k = 105. For DKM, we use Spark on 300 machines.

IQ-M D-IQ-M

k/k0 100K 150K 200K 86K 120K 152K
time (s) 212.6 271.1 325.8 140.6 249.6 277.2

Table 3. Time per iteration and k/k0 for IQ-means and dynamic
IQ-means on YFCC100M.

One could just take into account that we are using a global
feature reduced to 128 dimensions per image. What is im-
portant is that in terms of classification, all approximations
are equivalent to k-means in practice.

Large scale experiments. To demonstrate the scalability
of IQ-means, we perform clustering on the YFCC100M
dataset. We fix the grid size to s = 8192, leaving 13M
non-empty cells for the 100 million vectors. Following the
tuning experiments, we use overlap threshold ⌧ = 0.6 for
dynamic IQ-means and end up with k = 85742 after 20 it-
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encoding of data points that is constant in k, but not codebook learning, which is performed on a different dataset.
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(nearly three) orders of magnitude compared to k-means,
while the loss in distortion is reasonable.

Given the existing ground truth of Paris dataset, Fig. 6
further evaluates IQ-means and dynamic IQ-means against
other methods on a precision-recall diagram. Due to quan-
tization, it appears that our methods do not reach the upper-
left extreme of high precision and low recall, which can be
improved with a finer grid at higher cost. Otherwise, all
methods are comparable regardless of their cost. Of course,
none of these methods is anywhere near in performance to
more expensive dedicated methods like iconoid shift [38].

CKM DKM D-IQ-M

k/k0 100000 100000 85742
time (s) 13068.1 7920.0 140.6

precision 0.474 0.616 0.550
Table 2. Time per iteration and average precision for cell-k-means,
dynamic IQ-means and distributed k-means on YFCC100M with
initial k = 105. For DKM, we use Spark on 300 machines.

IQ-M D-IQ-M

k/k0 100K 150K 200K 86K 120K 152K
time (s) 212.6 271.1 325.8 140.6 249.6 277.2

Table 3. Time per iteration and k/k0 for IQ-means and dynamic
IQ-means on YFCC100M.

One could just take into account that we are using a global
feature reduced to 128 dimensions per image. What is im-
portant is that in terms of classification, all approximations
are equivalent to k-means in practice.

Large scale experiments. To demonstrate the scalability
of IQ-means, we perform clustering on the YFCC100M
dataset. We fix the grid size to s = 8192, leaving 13M
non-empty cells for the 100 million vectors. Following the
tuning experiments, we use overlap threshold ⌧ = 0.6 for
dynamic IQ-means and end up with k = 85742 after 20 it-



Results: YFCC100M

CKM distributed k-means (× 300) dynamic IQ-means

k/k′ 100000 100000 85742
time (s) 13068.1 7920.0 140.6
precision 0.474 0.616 0.550

Table: time per iteration and average precision, initial k = 105, s=8192

IQ-M D-IQ-M

k/k′ 100K 150K 200K 86K 120K 152K
time (s) 212.6 271.1 325.8 140.6 249.6 277.2

Table: time per iteration and k/k′



Mining example: Paris & YFCC100M

clustering on Paris

clustering on Paris & YFCC100M



Conclusions

IQ-means: a very fast k-means variant

• quantize points on a grid of two subspaces

• apply inverted search from centroids to cells

• dynamic estimation at nearly zero cost

• assignment step is faster than update step!

web-scale clustering

• extremely compressed data (26bits per image for YFCC100M)

• clustering of 100M images, on a single machine, in less than an hour

• results worse than using (costly) dedicated mining methods, but on par with
much slower k-means variants
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Source code on git:
http://github.com/iavr/iqm

Thank you!

http://github.com/iavr/iqm
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