Web-scale image clustering revisited

Yannis Avrithis[†], **Yannis Kalantidis**[‡], Evangelos Anagnostopoulos[†], Ioannis Z. Emiris[†]

[†]University of Athens, [‡]Yahoo Labs San Francisco

ICCV 2015, 13-16th December 2015, Santiago, Chile

Introduction

Inverted-quantized *k*-means (IQ-means)

Experiments

Introduction

Inverted-quantized k-means (IQ-means)

Experiments

Large-scale clustering

problem formulation

 given a dataset X of n points in ℝ^d, find k cluster centroids minimizing distortion (as in k-means)

k-means iteration

- assignment step: for every point, find closest centroid
- update step: given point assignments, update centroids

related ideas & challenges

approximations & speed-ups

- the assignment step is the bottleneck
- approximate *k*-means [Philbin *et al.* CVPR, 2007]: use ANN to speed-up assignment step all data points needed in memory
- binary *k*-means [Gong *et al.* CVPR, 2015]: binarize points and centroids data now in compressed form, search in Hamming space

Ranked retrieval

[Broder et al. WSDM, 2014]

inverse search

- data remain fixed across iterations: index points, search for centroids
- dataset required in memory

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()

Dimensionality-recursive vector quantization

[Avrithis, ICCV, 2013]

data compression & inverse search

- quantize points to centroids using *inverted multi-index* [Babenko & Lempitsky, 2012], adopt inverse search
- search is a propagation on a 2d-grid, joint priority queue

Expanding Gaussian mixtures

[Avrithis & Kalantidis, ECCV, 2012]

dynamic estimation of the number of centroids

- probabilistic model that allows estimation of cluster overlap
- point-to-centroid search & centroid-to-centroid search

Inverted Quantized *k*-means (IQ-means)

- subspace quantization & search via multi-index
- centroid-to-cell search, independent queries per centroid
- dynamic estimation of k at nearly zero cost

Web-scale image clustering

[Chum & Matas, PAMI, 2010]

- detect seed images using minHash
- grow seeds via retrieval & expansion \Rightarrow 100K images

revisiting with IQ-means

cluster 100M images in less than an hour on a single machine

イロト 不得 トイヨト イヨト ヨー ろくで

Introduction

Inverted-quantized *k*-means (IQ-means)

Experiments

Quantization

compressing the dataset

- express \mathbb{R}^d as the Cartesian product of two orthogonal subspaces, $S^1 \times S^2$, of d/2 dimensions each subject to optimization [Ge *et al.*, 2013]
- train two sub-codebooks U^1, U^2 of size s independently on projections of sample data on S^1, S^2
- codebook $U = U^1 \times U^2$ contains $s \times s$ cells can be seen as a discrete two dimensional grid [Babenko & Lempitsky, 2012]
- vector $x = (x^1, x^2)$ can be quantized to a cell using quantizer $q(x) = (q^1(x^1), q^2(x^2))$, where $q^{\ell}(x^{\ell}) = \arg \min_{u^{\ell} \in U^{\ell}} \|x^{\ell} u^{\ell}\|$ for $\ell = 1, 2$

Representation

discarding original data

- for cell u_{α} , probability $p_{\alpha} = |X_{\alpha}|/n$, with $X_{\alpha} = \{x \in X : q(x) = u_{\alpha}\}$
- the mean $\mu_{\alpha} = \frac{1}{|X_{\alpha}|} \sum_{x \in X_{\alpha}} x$ of all points in X_{α} is kept for each cell u_{α}
- cells with their sample mean μ_{lpha} and probability p_{lpha} replace the original data

create an index with cell means

Update step

moving the centroids

• for all $c_m \in C$:

$$c_m \leftarrow \frac{1}{P_m} \sum_{\alpha \in A_m} p_\alpha \mu_\alpha,$$

where:

- $A_m = \{ \alpha \in I : a(u_\alpha) = m \}$: the indices of all cells assigned to c_m during the assignment step
- $P_m = \sum_{\alpha \in A_m} p_{\alpha}$: the proportion of points assigned to centroid c_m , with $a(u) = \arg \min_{c_m \in C} ||u c_m||$

Assignment step

multi-index search independently for every centroid

- for each centroid c_i , the w nearest sub-codewords are found in U^1, U^2 , and ordered by ascending distance to c_i , for i = 1, 2
- a $w \times w$ search block is thus determined for c_i
- the multi-sequence [Babenko & Lempitsky, 2012] algorithm is used for traversing the cells in the search block
- termination: count the total number of underlying points in visited cells, and terminates when this reaches a target number ${\cal T}$

Centroid-to-cell search

visited cells on original grid

search blocks for c_1 , c_2

Dynamic estimation of k

centroid-to-centroid search

- record nearest centroid for each cell
- during search: keep list of neighboring centroids (*i.e.* other centroids that have visited the same cells no extra cost)

centroid modeling

• model the distribution of points assigned to cluster c_m by an isotropic normal density $\mathcal{N}(x|c_m, \sigma_m)$ as in EGM [Avrithis & Kalantidis, ECCV, 2012]

$$\sigma_m^2 \leftarrow \frac{1}{P_m} \sum_{\alpha \in A_m} p_\alpha \|\mu_\alpha - c_m\|^2.$$

centroid deletion

- iterate over all clusters m in descending order of population P_m
- for every centroid, compute overlap with neighboring centroids
- purge clusters that overlap too much with all clusters kept so far

・ロト・(四)・(田)・(田)・(日)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

Introduction

Inverted-quantized k-means (IQ-means)

Experiments

Experiments

datasets

- SIFT1M [Jegou *et al.*, PAMI, 2011]: 1M 128-dimensional SIFT vectors, and a learning set of 100K vectors
- Paris [Wayand *et al.*, RMLE, 2010]: 500K images from Paris, ground truth of 79 landmark clusters covering 94K dataset images
- Yahoo Flickr Creative Commons 100M (YFCC100M) [Thomee *et al.*, CACM, 2015]: 100 million public Flickr images with a creative commons license

image representation

 AlexNet CNN fc7 features, PCA to 128 dimensions, optimized subspace decomposition [Ge et al., 2013]

evaluation metrics

- distortion, timing, precision-recall (Paris)
- YFCC100M: cluster precision (or *purity*) on a noisy set of image classification labels (percentage of images that share top class label)

Results: SIFT1M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Results: YFCC100M

	CKM	distributed k -means (\times 300)	dynamic IQ-means
k/k'	100000	100000	85742
time (s)	13068.1	7920.0	140.6
precision	0.474	0.616	0.550

Table: time per iteration and average precision, initial $k = 10^5$, s=8192

	IQ-M			D-IQ-M		
k/k'	100K	150K	200K	86K	120K	152K
time (s)	212.6	271.1	325.8	140.6	249.6	277.2

Table: time per iteration and k/k'

Mining example: Paris & YFCC100M

clustering on Paris

clustering on Paris & YFCC100M

イロト 不得 トイヨト イヨト ヨー ろくで

Conclusions

IQ-means: a very fast k-means variant

- quantize points on a grid of two subspaces
- apply inverted search from centroids to cells
- dynamic estimation at nearly zero cost
- assignment step is faster than update step!

web-scale clustering

- extremely compressed data (26bits per image for YFCC100M)
- clustering of 100M images, on a single machine, in less than an hour
- results worse than using (costly) dedicated mining methods, but on par with much slower *k*-means variants

www.visualgenome.org

VISUALGENOME

An ongoing effort to connect structured image concepts to language.

- R. Krishna, Y. Zhu, O. Groth, J. Johnson,
- K. Hata, J. Kravitz, S. Chen, Y. Kalantidis,
- L. Jia-Li, D. A. Shamma, M. S. Bernstein,

L. Fei-Fei

- 108,249 COCO images
- 4.2 million region descriptions
- 1.7 million visual questions and answers
- 2.1 million object instances
- 1.8 million attributes
- 1.8 million relationships
- Everything mapped to WordNet synsets

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Source code on git: http://github.com/iavr/iqm

Thank you!