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Large-scale clustering

problem formulation

e given a dataset X of n points in R?, find k cluster centroids
minimizing distortion (as in k-means)

k-means iteration
e assignment step: for every point, find closest centroid

e update step: given point assignments, update centroids



related ideas & challenges

approximations & speed-ups
e the assignment step is the bottleneck

e approximate k-means [Philbin et al. CVPR, 2007]: use ANN to speed-up
assignment step — all data points needed in memory

e binary k-means [Gong et al. CVPR, 2015]: binarize points and centroids —
data now in compressed form, search in Hamming space



Ranked retrieval
[Broder et al. WSDM, 2014]
inverse search
e data remain fixed across iterations: index points, search for centroids

o dataset required in memory
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Dimensionality-recursive vector quantization
[Avrithis, ICCV, 2013]

data compression & inverse search

e quantize points to centroids using inverted multi-index [Babenko &
Lempitsky, 2012], adopt inverse search
e search is a propagation on a 2d-grid, joint priority queue




Expanding Gaussian mixtures
[Avrithis & Kalantidis, ECCV, 2012]
dynamic estimation of the number of centroids
e probabilistic model that allows estimation of cluster overlap

e point-to-centroid search & centroid-to-centroid search




Inverted Quantized k-means (IQ-means)

e subspace quantization & search via multi-index
o centroid-to-cell search, independent queries per centroid

e dynamic estimation of k at nearly zero cost




Web-scale image clustering
[Chum & Matas, PAMI, 2010]

o detect seed images using minHash

o grow seeds via retrieval & expansion = 100K images

revisiting with 1Q-means

o cluster 100M images in less than an hour on a single machine
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Quantization

compressing the dataset

o express R? as the Cartesian product of two orthogonal subspaces, S x S2,
of d/2 dimensions each — subject to optimization [Ge et al. , 2013]

e train two sub-codebooks U, U? of size s independently on projections of
sample data on S*, 52

e codebook U = U' x U? contains s X s cells — can be seen as a discrete two
dimensional grid [Babenko & Lempitsky, 2012]

o vector r = (x!,x ) can be quantlzed to a cell using quantizer
4(2) = (¢! (z1), (%)), where ¢/(z*) = argmin ey [l2 — | for £ = 1,2



Representation

discarding original data
o for cell uq, probability p, = |X,|/n, with X, = {z € X : q(z) = un}
e the mean u, = IXilal ZzGXa x of all points in X, is kept for each cell u,
e cells with their sample mean p,, and probability p, replace the original data

e create an index with cell means



Update step

moving the centroids

e forall e, € C: )
Cm < me Z Pallos
aEA,
where:
o A, ={a€el:a(u,) =m}: the indices of all cells assigned to ¢,
during the assignment step

e P, = ZaeAm Pa: the proportion of points assigned to centroid ¢,
with a(u) = argmin., cc ||u — ||



Assignment step

multi-index search independently for every centroid

e for each centroid ¢;, the w nearest sub-codewords are found in U!, U?, and
ordered by ascending distance to ¢;, for i = 1,2

e a w X w search block is thus determined for ¢;

e the multi-sequence [Babenko & Lempitsky, 2012] algorithm is used for
traversing the cells in the search block

e termination: count the total number of underlying points in visited cells, and
terminates when this reaches a target number T’



Centroid-to-cell search
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Dynamic estimation of £

centroid-to-centroid search
e record nearest centroid for each cell

o during search: keep list of neighboring centroids (i.e. other centroids that
have visited the same cells — no extra cost)

centroid modeling

e model the distribution of points assigned to cluster ¢, by an isotropic
normal density N (z|cp, o) as in EGM [Avrithis & Kalantidis, ECCV, 2012]

1
Ty 4= P Z Palltia — cmll.

m a€An,

centroid deletion
e iterate over all clusters m in descending order of population P,
e for every centroid, compute overlap with neighboring centroids

e purge clusters that overlap too much with all clusters kept so far



Dynamic 1Q-means
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Experiments

datasets

e SIFTIM [Jegou et al. , PAMI, 2011]: 1M 128-dimensional SIFT vectors, and a
learning set of 100K vectors

e Paris [Wayand et al. , RMLE, 2010]: 500K images from Paris, ground truth of
79 landmark clusters covering 94K dataset images

e Yahoo Flickr Creative Commons 100M (YFCCL00M) [Thomee et al. , CACM,
2015]: 100 million public Flickr images with a creative commons license

image representation

o AlexNet CNN fc7 features, PCA to 128 dimensions, optimized subspace
decomposition [Ge et al. , 2013]

evaluation metrics
e distortion, timing, precision-recall (Paris)

e YFCC100M: cluster precision (or purity) on a noisy set of image classification
labels (percentage of images that share top class label)
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Results: YFCC100M

’ H CKM  distributed k-means (x 300) dynamic IQ-means ‘
k/K 100000 100000 85742
time (s) || 13068.1 7920.0 140.6
precision || 0.474 0.616 0.550

Table: time per iteration and average precision, initial k = 10°, s=8192

| [ IQ-M D-IQ-M
k/K" [ 100K 150K 200K | 86K 120K 152K
time (s) || 212.6 271.1 325.8|140.6 249.6 277.2

Table: time per iteration and k/k’



Mining example: Paris & YFCC100M

cIusterlng on Paris & YFCC100M



Conclusions

IQ-means: a very fast k-means variant
e quantize points on a grid of two subspaces
e apply inverted search from centroids to cells
e dynamic estimation at nearly zero cost
e assignment step is faster than update step!
web-scale clustering
o extremely compressed data (26bits per image for YFCC100M)
e clustering of 100M images, on a single machine, in less than an hour

® results worse than using (costly) dedicated mining methods, but on par with
much slower k-means variants
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Source code on git:
http://github.com/iavr/iqm

Thank you!


http://github.com/iavr/iqm
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