

Unsupervised object discovery for instance recognition

Oriane Siméoni Ahmet Iscen Giorgos Tolias Yannis Avrithis Ondřej Chum

One query

- One solution :
 - Index images using one global descriptor from the entire image

One query

- One solution :
 - Index images using one global descriptor from the entire image
 - BUT : background

- One solution :
 - Index images using one global descriptor from the entire image
 - BUT : background, clutter and obstruction alter the quality of the descriptor

One query

- Other solution :
 - Index images using a regional descriptor constructed from uniformly sampled regions

One query

- Our solution:
 - Create one global descriptor using the most discriminative regions
 - $\rightarrow\,$ corresponding to repeating database objects

How to find them ?

One query

Create saliencies

- Computed using CNN activations
 - → eg. CroW Kalantidis et al. ArXiv 2015

Detect regions on saliency maps

Use expanded version of Expanding Gaussian Mixture
Avrithis et al. ECCV 2012 - to detect regions on saliency maps

Consider each detected region independently

- Consider each detected region independently
 - Find its nearest neighbors

- Consider each detected region independently
 - Find its nearest neighbors
- Create the knn-graph

- Consider each detected region independently
 - Find its nearest neighbors
- Create the knn-graph
 - Compute katz centrality, it reflects a node importance

Compute Object Saliency

- For each patch of a sliding window :
 - Find nearest neighbors in the graph
 - Sum centrality of the neighbors

Detect regions on the object saliency

 Use Expanding Gaussian Mixture on saliency maps to detect regions

Detect regions on the object saliency

Again, using Expanding Gaussian Mixture

Now we are able to find Mario everywhere !

Results

Same performance

Results

- Same performance
- 3 time faster at query time

Results

#descriptors per image

- Same performance
- 3 time faster at query time
- 4 time less memory

For details, please come to the **poster #XX**

Thank you for listening

