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TRAINING DL MODEL FOR THE CLASSIFICATION TASK
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m Long and fastidious process
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ACTIVE LEARNING
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ACTIVE LEARNING
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m Relevant before Deep m Not studied much in the
Learning context of Deep Learning



WHAT IS THE BEST SOLUTION?

Baselines

® Random
Selects uniformly random
images.

2y, Geifman and R. El-Yaniv. “Deep Active Learning over the Long Tail". In: arXiv preprint arXiv:1711.00941 (2017)
20, Sener and S. Savarese. “Active learning for convolutional neural networks: A core-set approach”. In: arXiv (2018)
2K. Wang et al. “Cost-effective active learning for deep image classification”. In: IEEE Trans. CSVT 27.12 (2017), pp. 2591-2600
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® Random
Selects uniformly random
images.

m Geometry'
Selects most distant image to its
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m CEAL®
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EXPERIMENTAL DETAILS

m Network

» 13-layer convolutional network®
» model trained from scratch

m Training very dependent on the data — 5 repetitions
m Metrics: average accuracy and standard deviation

m Datasets

» MNIST* (10 cls, 60000 imgs) 3 sea/ s Rl T e
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3s. Laine and T. Aila. “Temporal ensembling for semi-supervised learning”. In: arXiv preprint arXiv:1610.02242 (2016).
5Y. LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278-2324

6y, Netzer et al. “Reading Digits in Natural Images with Unsupervised Feature Learning”. In: NIPS Workshop on Deep Learning and
Unsupervised Feature Learning (Jan. 2011)

7A. Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: 2009




WHAT IS THE BEST SOLUTION?
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No clear winner.



THE IDEA

What if we could
m Improve results with no additional supervision
m Use unlabeled data during training
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INTEGRATING INFORMATION FROM UNLABELED DATA

m Improving the model using unlabeled data
m Unsupervised pre-training

m Following Deep Cluster® to pre-train CNN
> Assign classes to data given closest centroids
» Train the network
» Re-assign classes

Classification

cof
Input Convnet W’C\‘\’
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8M. caron et al. “Deep Clustering for Unsupervised Learning of Visual Features”. In: arXiv preprint arXiv:1807.05520 (2018).
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IMPROVING ACTIVE LEARNING CYCLES

m Use unlabeled data in each cycle
m Adding semi-supervised learning

m Iterative label propagation following Iscen et al®.
» Construct a reciprocal k-nn graph on data features
> Label propagation
» Train classifier using pseudo-labels

9A. Iscen et al. “Label propagation for Deep Semi-supervised Learning”. In: CVPR. 2019.




ADDING SEMI-SUPERVISION
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ADDING SEMI-SUPERVISION
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Benefits

m Results improved by up
to 15% from baselines

m Taking advantage of the
whole dataset

m Suits better deep
learning models
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CONCLUSIONS

Take home message
m Active learning benefits from using unlabeled data
m We obtain better models requiring less labeled data
m Random selection of images is best with small budgets
m The selection method does not appear to matter

Contributions
m First results mixing active learning and unlabeled methods in the
context of Deep Learning
m Proposition to rethink Deep Active Learning

> using a scenario integrating unlabeled data
> to always compare to Random with small budgets



