RETHINKING DEEP ACTIVE LEARNING: USING UNLABELED DATA AT MODEL TRAINING

ORIANE SIMÉONI MATEUSZ BUDNIK YANNIS AVRITHIS GUILLAUME GRAVIER

INRIA, IRISA, UNIV RENNES, CNRS

TRAINING DL MODEL FOR THE CLASSIFICATION TASK

Requires large annotated datasets

- Annotation done by humans
- Long and fastidious process

Supervised

Supervised

(Unsupervised

class 1 class 2

Machine learning model

Annotator

Machine learning model

Annotator

Learning

context of Deep Learning

Baselines

 Random Selects uniformly random images.

²Y. Geifman and R. El-Yaniv. "Deep Active Learning over the Long Tail". In: arXiv preprint arXiv:1711.00941 (2017)

²O. Sener and S. Savarese. "Active learning for convolutional neural networks: A core-set approach". In: arXiv (2018)

²K. Wang et al. "Cost-effective active learning for deep image classification". In: IEEE Trans. CSVT 27.12 (2017), pp. 2591–2600

Baselines

- Random Selects uniformly random images.
- Geometry¹ Selects most distant image to its nearest labeled or previously acquired examples.

²Y. Geifman and R. El-Yaniv. "Deep Active Learning over the Long Tail". In: arXiv preprint arXiv:1711.00941 (2017)

²O. Sener and S. Savarese. "Active learning for convolutional neural networks: A core-set approach". In: arXiv (2018)

²K. Wang et al. "Cost-effective active learning for deep image classification". In: IEEE Trans. CSVT 27.12 (2017), pp. 2591–2600

Baselines

Random Selects uniformly random

images.

■ Geometry¹

Selects most distant image to its nearest labeled or previously acquired examples.

Uncertainty

Selects most uncertain images: highest entropy of the classifier output probabilities.

²Y. Geifman and R. El-Yaniv. "Deep Active Learning over the Long Tail". In: arXiv preprint arXiv:1711.00941 (2017)

²O. Sener and S. Savarese. "Active learning for convolutional neural networks: A core-set approach". In: arXiv (2018)

²K. Wang et al. "Cost-effective active learning for deep image classification". In: IEEE Trans. CSVT 27.12 (2017), pp. 2591–2600

Baselines

Random

Selects uniformly random images.

■ Geometry¹

Selects most distant image to its nearest labeled or previously acquired examples.

Uncertainty

Selects most uncertain images: highest entropy of the classifier output probabilities.

■ CEAL²
Uses unlabeled data.

²Y. Geifman and R. El-Yaniv. "Deep Active Learning over the Long Tail". In: arXiv preprint arXiv:1711.00941 (2017)

²O. Sener and S. Savarese. "Active learning for convolutional neural networks: A core-set approach". In: arXiv (2018)

²K. Wang et al. "Cost-effective active learning for deep image classification". In: IEEE Trans. CSVT 27.12 (2017), pp. 2591–2600

Baselines

■ Random

Selects uniformly random images.

Geometry¹

Selects most distant image to its nearest labeled or previously acquired examples.

Uncertainty

Selects most uncertain images: highest entropy of the classifier output probabilities.

■ CEAL²
Uses unlabeled data.

²Y. Geifman and R. El-Yaniv. "Deep Active Learning over the Long Tail". In: arXiv preprint arXiv:1711.00941 (2017)

²O. Sener and S. Savarese. "Active learning for convolutional neural networks: A core-set approach". In: arXiv (2018)

²K. Wang et al. "Cost-effective active learning for deep image classification". In: IEEE Trans. CSVT 27.12 (2017), pp. 2591–2600

EXPERIMENTAL DETAILS

- Network
 - ► 13-layer convolutional network³
 - model trained from scratch
- lacktriangle Training very dependent on the data ightarrow 5 repetitions
- Metrics: average accuracy and standard deviation
- Datasets
 - ► MNIST⁴ (10 cls, 60000 imgs)
 - ► SVHN⁵ (10 cls, 73257 imgs)
 - ► CIFAR-10⁶ (10 cls, 50000 imgs)
 - ► CIFAR-100⁷ (100 cls, 50000 imgs)

³S. Laine and T. Aila. "Temporal ensembling for semi-supervised learning". In: arXiv preprint arXiv:1610.02242 (2016).

⁵Y. LeCun et al. "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324

⁶Y. Netzer et al. "Reading Digits in Natural Images with Unsupervised Feature Learning". In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (Jan. 2011)

⁷A. Krizhevsky. "Learning Multiple Layers of Features from Tiny Images". In: 2009

No clear winner.

THE IDEA

What if we could

- Improve results with no additional supervision
- Use unlabeled data during training

USING MORE UNLABELED DATA

USING MORE UNLABELED DATA

USING MORE UNLABELED DATA

INTEGRATING INFORMATION FROM UNLABELED DATA

- Improving the model using unlabeled data
- Unsupervised pre-training
- Following Deep Cluster⁸ to pre-train CNN
 - Assign classes to data given closest centroids
 - ► Train the network
 - ► Re-assign classes

⁸ M. Caron et al. "Deep Clustering for Unsupervised Learning of Visual Features". In: arXiv preprint arXiv:1807.05520 (2018).

INTEGRATING INFORMATION FROM UNLABELED DATA

INTEGRATING INFORMATION FROM UNLABELED DATA

Benefits

- performed only once at the beginning of the process
- can bring up to 6% improvement

IMPROVING ACTIVE LEARNING CYCLES

- Use unlabeled data in each cycle
- Adding semi-supervised learning
- Iterative label propagation following Iscen et al9.
 - ► Construct a reciprocal *k*-nn graph on data features
 - ► Label propagation
 - ► Train classifier using pseudo-labels

1.1

⁹A. Iscen et al. "Label propagation for Deep Semi-supervised Learning". In: CVPR, 2019.

ADDING SEMI-SUPERVISION

1.1

ADDING SEMI-SUPERVISION

Benefits

- Results improved by up to 15% from baselines
- Taking advantage of the whole dataset
- Suits better deep learning models

ADDING SEMI-SUPERVISION

CONCLUSIONS

Take home message

- Active learning benefits from using unlabeled data
- We obtain better models requiring less labeled data
- Random selection of images is best with small budgets
- The selection method does not appear to matter

Contributions

- First results mixing active learning and unlabeled methods in the context of Deep Learning
- Proposition to rethink Deep Active Learning
 - using a scenario integrating unlabeled data
 - ► to always compare to Random with small budgets