

Graph convolutional networks for learning with few clean and many noisy labels

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Ondrej Chum, Cordelia Schmid

Few clean and many noisy images

Admiral

• Few-shot classification: challenging to learn with few examples

Few clean and many noisy images

Admiral

Web collection (tags, captions)

• Web-crawling with class names: weakly labeled (noisy) examples

Few clean and many noisy images

Admiral

- Our approach:
 - per-class cleaning process with GCN
 - appropriate use of noisy examples in classifier learning

GCN for noisy data cleaning

Graph created with pre-trained embeddings
Based on reciprocal nearest neighbors

clean
label
noisy
(weak) label

GCN for noisy data cleaning

- GCN binary classifier
 - 2 layers, 2 non-linearities: ReLU and sigmoid

$$F: \mathbb{R}^{N \times N} \times \mathbb{R}^{d \times N} \to \mathbb{R}^N$$

clean label
clean (weak) label

GCN for noisy data cleaning

- noisy clean (weak) label label
- GCN binary classifier
 - 2 layers, 2 non-linearities: ReLU and sigmoid

$$F: \mathbb{R}^{N \times N} \times \mathbb{R}^{d \times N} \to \mathbb{R}^N$$

- Binary cross-entropy loss
 - Targets output 1 for clean and 0 for noisy
 - \circ λ importance weight

$$-\frac{1}{k}\sum_{i=1}^{k}\log(F(A,Z)_{i}) - \frac{\lambda}{N-k}\sum_{i=k+1}^{N}\log(1 - F(A,Z)_{i})$$

Cleaning is performed separately for each class

Examples of relevance weights

black widow

0.06

0.06

0.06

0.06

0.060.06

pineapple

0.00

0.00

0.00

0.00

Experimental setup

- Extend the Low-Shot ImageNet Benchmark (Hariharan and Girschick)
- Clean data: subset of ImageNet or Places365
 - k random examples
- Noisy data from YFCC100M
 - free-form user-tags and captions
- Feature extractor trained on non-overlapping subset of ImageNet or Places365
 - ResNet10 or ResNet50

Classifiers

- Prototypical classifier
 - Average embedding
 - Ours: weighted average according to relevance
- Linear classifier
 - FC layer trained with SGD and cross-entropy loss
 - Ours: weighted training examples according to relevance
- CNN classifier
 - Assumes access to images
 - Feature extractor and FC layer trained with SGD and cross-entropy loss
 - Ours: weighted training examples according to relevance

Importance of negative examples

Less clean examples -> more dependance on noisy data (smaller λ)

Method	$k{=}1$	5	
	Few Clear	N EXAMPLES	
Class proto. [9]	45.3 ± 0.65	69.3 ± 0.32	without noisy
Few Clean	& Many No	ISY EXAMPLES	
Similarity	$49.8 {\pm} 0.29$	$64.2 {\pm} 0.32$	
β -weighting, $\beta = 1$	$56.1 {\pm} 0.06$	$57.1{\pm}0.05$	
β -weighting, β^*	$55.6 {\pm} 0.24$	$63.4 {\pm} 0.25$	
Linear	$59.8{\pm}0.00$	$58.4{\pm}0.00$	
Label Propagation	$62.6{\pm}0.35$	$74.6 {\pm} 0.30$	
MLP	$63.6{\scriptstyle \pm 0.41}$	$73.7{\scriptstyle\pm0.25}$	
Ours	$67.8{\pm}0.10$	$73.9{\pm}0.17$	

Method	$k{=}1$	5	
	Few Clean Examples		
Class proto. [9]	45.3 ± 0.65	69.3 ± 0.32	without noisy
Few Clean	& Many No	ISY EXAMPLES	
Similarity	49.8 ± 0.29	64.2 ± 0.32	
β -weighting, $\beta = 1$	56.1 ± 0.06	57.1 ± 0.05	noisy without cleaning
β -weighting, β^*	$55.6{\pm}0.24$	$63.4 {\pm} 0.25$	0-0
Linear	$59.8{\pm}0.00$	$58.4{\pm}0.00$	
Label Propagation	$62.6{\pm}0.35$	$74.6 {\pm} 0.30$	
MLP	$63.6{\scriptstyle \pm 0.41}$	$73.7{\scriptstyle\pm0.25}$	
Ours	$67.8 {\pm} 0.10$	$73.9{\scriptstyle \pm 0.17}$	

Method	$k{=}1$	5	
	Few Clea	n Examples	
Class proto. [9]	45.3 ± 0.65	69.3 ± 0.32	without noisy
Few Clean	& Many No	ISY EXAMPLES	
Similarity	49.8 ± 0.29	64.2 ± 0.32	
β -weighting, $\beta = 1$	56.1 ± 0.06	57.1 ± 0.05	noisy without cleaning
β -weighting, β^*	$55.6 {\pm} 0.24$	$63.4 {\pm} 0.25$	0-0
Linear	$59.8{\pm}0.00$	$58.4{\pm}0.00$	
Label Propagation	$62.6 {\pm} 0.35$	74.6 ± 0.30	
MLP	63.6 ± 0.41	73.7 ± 0.25	cleaning with MLP
Ours	$67.8 {\pm} 0.10$	$73.9{\scriptstyle \pm 0.17}$	

Method	$k{=}1$	5	
	Few Clea	n Examples	
Class proto. [9]	45.3 ± 0.65	69.3 ± 0.32	without noisy
Few Clean	& Many No.	ISY EXAMPLES	
Similarity	49.8 ± 0.29	64.2 ± 0.32	
β -weighting, $\beta = 1$	56.1 ± 0.06	57.1 ± 0.05	noisy without cleaning
β -weighting, β^*	$55.6{\pm}0.24$	$63.4 {\pm} 0.25$	0-0
Linear	$59.8{\pm}0.00$	$58.4{\pm}0.00$	
Label Propagation	$62.6 {\pm} 0.35$	74.6 ± 0.30	
MLP	63.6 ± 0.41	73.7 ± 0.25	cleaning with MLP
Ours	67.8 ± 0.10	73.9±0.17	cleaning with GCN

Accuracy with Different Classifiers

Conclusions

- Supplement few-shot learning with additional noisy data
- GCN-based cleaning method to choose appropriate instances
- Significant improvement in accuracy
 - 45.3 to 74.1 in 1-shot learning

Paper is available at arXiv:1910.00324