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Few clean and many noisy images

Admiral

● Few-shot classification: challenging to learn with few examples



Few clean and many noisy images

Admiral

Web collection (tags, captions)

● Web-crawling with class names: weakly labeled (noisy) examples



Few clean and many noisy images

Admiral

● Our approach: 
○ per-class cleaning process with GCN
○ appropriate use of noisy examples in classifier learning

Web collection (tags, captions)



GCN for noisy data cleaning

noisy 
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● Graph created with pre-trained embeddings
○ Based on reciprocal nearest neighbors 
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GCN for noisy data cleaning

noisy 
(weak) label

clean 
label

● GCN binary classifier
○ 2  layers, 2 non-linearities: ReLU and 

sigmoid

●  Binary cross-entropy loss
○ Targets  output 1 for clean and 0 for noisy
○ λ - importance weight



Overview

Cleaning is performed separately for each class

2. Minimize
Loss-clean + λ Loss-noisy
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1. Visual similarity graph per 
class

3. Relevance weight output
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Examples of relevance weights



Experimental setup

● Extend the Low-Shot ImageNet Benchmark (Hariharan and Girschick)

● Clean data: subset of ImageNet or Places365
○ k random examples

● Noisy data from YFCC100M
○ free-form user-tags and captions

● Feature extractor trained on non-overlapping subset of ImageNet or 
Places365
○ ResNet10 or ResNet50



Classifiers

● Prototypical classifier
○ Average embedding
○ Ours: weighted average according to relevance

● Linear classifier
○ FC layer trained with SGD and cross-entropy loss
○ Ours: weighted training examples according to relevance

● CNN classifier
○ Assumes access to images
○ Feature extractor and FC layer trained with SGD and cross-entropy loss
○ Ours: weighted training examples according to relevance



Importance of negative examples

Less clean examples -> more dependance on noisy data (smaller λ)
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Results on Extended Low-Shot ImageNet 



Conclusions

● Supplement few-shot learning with additional noisy data

● GCN-based cleaning method to choose appropriate instances

● Significant improvement in accuracy
○ 45.3 to 74.1 in 1-shot learning
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