FEW-SHOT FEW-SHOT LEARNING AND THE ROLE OF SPATIAL ATTENTION

Yann Lifchitz^{1,2}, Yannis Avrithis¹, Sylvaine Picard²

¹Inria, Univ Rennes, CNRS, IRISA ²Safran

Few-shot learning

Definition:

- > Access to a base dataset of images in class set C
- Very small support set of images in class set C'
- > The goal is to classify queries in C'
- > C and C' belong to the same domain

• Motivation for a new setting:

- > In domain data (base dataset) can be scarce
- > Does not take advantage of the large scale dataset available

Overview

New few-shot paradigm:

- ullet Model pretrained on a large-scale dataset, with classifier on a prior class set \mathcal{C}^0
- ◆ Only few or zero examples per base class C

3 stages:

- Domain adaptation (base class dataset)
- Novel classes adaptation (few-shot novel data)
- ◆ Classifying queries into novel classes C'

• Introduction of a simple attention mechanism that improves classification in this setting

Base class training

- In case base class training data is available
- Copy of a pretrained network
- Fine-tuning of the few last layers with dense classification¹

Spatial Attention

- For each pixel of the feature map is computed a prediction on the prior classes C^0
- ◆ No ground truth (ground truth in *C*′)
- For each location we compute the entropy of the prediction
- Low entropy indicates → discriminative region
- High entropy → background
- Entropy is normalized to produce weights maps
- Pooling function is global weighted average pooling (GwAP)

Novel classes images, overlaid with entropy-based spatial attention maps

Novel class adaptation

- Original pretrained network used to produce attention weights
- Global average pooling is replaced by global weighted average pooling
- Same forward process at inference

Results: CUB

Effect of base training

Very important for large domain gap

Effect of novel class adaptation

 More significant for small base datasets

Effect of spatial attention

- More significant for small base datasets
- Appears to be domain independent
- Attention and adaptation can be combined for the best results

Attention Adaptation	Novel: $k'=1$				Novel: $k'=5$			
		✓	√	√ ✓		✓	√	√
BASE	PLACES							
k = 0 $k = 1$ $k = 5$ ALL	38.80±0.24 40.50±0.23 56.47±0.28 80.68±0.27	39.69 ± 0.24 41.74 ± 0.24 57.16 ± 0.29 80.48 ± 0.27	39.76±0.24 41.11±0.24 56.69±0.29 80.68±0.27	40.79 ± 0.24 42.23 ± 0.24 57.32 ± 0.29 80.56 ± 0.27	55.09 ± 0.24 57.25 ± 0.22 74.27 ± 0.23 90.38 ± 0.16	56.95 ± 0.23 58.89 ± 0.23 74.95 ± 0.23 90.33 ± 0.16	63.29±0.24 65.42±0.23 75.82±0.23 91.22±0.15	64.27±0.23 66.78±0.23 76.32±0.23 91.17±0.15
BASE	RANDOMLY INITIALIZED							
k = 1 $k = 5$ ALL	31.65±0.19 40.52±0.25 71.78±0.30	- - -	31.37±0.19 40.50±0.26 71.77±0.30	- - -	39.45±0.20 52.94±0.25 85.60±0.18	- - -	42.70±0.21 53.45±0.25 85.96±0.19	- - -
Baseline++ [5] ProtoNet [5] Ensemble [7]	67.02±0.90 71.88±0.91 68.77±0.71	- - -	- - -	- - -	83.58±0.54 87.42±0.48 84.62±0.44	- - -	- - -	

Thank you for your attention

