FEW-SHOT FEW-SHOT LEARNING AND THE ROLE OF SPATIAL ATTENTION Yann Lifchitz^{1,2}, Yannis Avrithis¹, Sylvaine Picard² ¹Inria, Univ Rennes, CNRS, IRISA ²Safran ## **Few-shot learning** #### Definition: - > Access to a base dataset of images in class set C - Very small support set of images in class set C' - > The goal is to classify queries in C' - > C and C' belong to the same domain ### • Motivation for a new setting: - > In domain data (base dataset) can be scarce - > Does not take advantage of the large scale dataset available ## Overview #### New few-shot paradigm: - ullet Model pretrained on a large-scale dataset, with classifier on a prior class set \mathcal{C}^0 - ◆ Only few or zero examples per base class C #### 3 stages: - Domain adaptation (base class dataset) - Novel classes adaptation (few-shot novel data) - ◆ Classifying queries into novel classes C' • Introduction of a simple attention mechanism that improves classification in this setting ## Base class training - In case base class training data is available - Copy of a pretrained network - Fine-tuning of the few last layers with dense classification¹ ## **Spatial Attention** - For each pixel of the feature map is computed a prediction on the prior classes C^0 - ◆ No ground truth (ground truth in *C*′) - For each location we compute the entropy of the prediction - Low entropy indicates → discriminative region - High entropy → background - Entropy is normalized to produce weights maps - Pooling function is global weighted average pooling (GwAP) Novel classes images, overlaid with entropy-based spatial attention maps ## **Novel class adaptation** - Original pretrained network used to produce attention weights - Global average pooling is replaced by global weighted average pooling - Same forward process at inference ## **Results: CUB** #### Effect of base training Very important for large domain gap ## Effect of novel class adaptation More significant for small base datasets #### Effect of spatial attention - More significant for small base datasets - Appears to be domain independent - Attention and adaptation can be combined for the best results | Attention
Adaptation | Novel: $k'=1$ | | | | Novel: $k'=5$ | | | | |--|--|---|--|--|--|--|--|--| | | | ✓ | √ | √ ✓ | | ✓ | √ | √ | | BASE | PLACES | | | | | | | | | k = 0 $k = 1$ $k = 5$ ALL | 38.80±0.24
40.50±0.23
56.47±0.28
80.68±0.27 | 39.69 ± 0.24 41.74 ± 0.24 57.16 ± 0.29 80.48 ± 0.27 | 39.76±0.24
41.11±0.24
56.69±0.29
80.68±0.27 | 40.79 ± 0.24
42.23 ± 0.24
57.32 ± 0.29
80.56 ± 0.27 | 55.09 ± 0.24
57.25 ± 0.22
74.27 ± 0.23
90.38 ± 0.16 | 56.95 ± 0.23
58.89 ± 0.23
74.95 ± 0.23
90.33 ± 0.16 | 63.29±0.24
65.42±0.23
75.82±0.23
91.22±0.15 | 64.27±0.23
66.78±0.23
76.32±0.23
91.17±0.15 | | BASE | RANDOMLY INITIALIZED | | | | | | | | | k = 1 $k = 5$ ALL | 31.65±0.19
40.52±0.25
71.78±0.30 | -
-
- | 31.37±0.19
40.50±0.26
71.77±0.30 | -
-
- | 39.45±0.20
52.94±0.25
85.60±0.18 | -
-
- | 42.70±0.21
53.45±0.25
85.96±0.19 | -
-
- | | Baseline++ [5] ProtoNet [5] Ensemble [7] | 67.02±0.90
71.88±0.91
68.77±0.71 | -
-
- | -
-
- | -
-
- | 83.58±0.54
87.42±0.48
84.62±0.44 | -
-
- | -
-
- | | ## Thank you for your attention