## All the attention you need: Global-local, spatial-channel attention for image retrieval

paper https://arxiv.org/abs/2107.08000

Chull Hwan Song, Odd Concepts

Hye Joo Han, Odd Concepts



Research & Innovation

Oddconcepts



Yannis Avrithis, Athena RC

#### Introduction

- Goal: introduce a novel representation learning method for instance-level image retrieval
- Global-Local Attention Module (GLAM)
  - Attached at the end of backbone
  - All four forms of attention: either **local** or **global**, and either **spatial** or **channel**
- Contributions
  - First study employing all four forms of attention
  - Empirical evidence of the interaction of all forms of attention
  - State of the art on global descriptors (no re-ranking) for image retrieval



## Global-local attention module (GLAM)

local attention



global attention

 Collect contextual information from the feature tensor F through two parallel network streams, local and global attention

#### Global-local attention module (GLAM)

local attention



• GAP + conv1d yields c x 1 x 1 local channel attention maps

#### Global-local attention module (GLAM)

local attention



• Conv layers yield  $1 \times h \times w$  local spatial attention maps

### Global-local attention module (GLAM)

local attention

10



• GAP + conv1d yields *c* **x** *c* global channel attention maps

#### Global-local attention module (GLAM)

local attention

110



• Conv layers yield *hw x hw* global spatial attention maps

#### Global-local attention module (GLAM)



#### Datasets and implementation details

- ResNet101-GeM pooling
- Final embedding: 512 dimension
- Global descriptor only, without re-ranking
- Test set: Oxford5k, Paris6k, Revisited Oxford (ROxf)/Paris (RPar)
- Metrics: mean average precision (mAP)

#### State of the art comparisons

| Method               | TRAIN SET   | DIM  | Oxf5k | Par6k | $\mathcal{R}Medium$ |              | ${\cal R}$ Hard |              |
|----------------------|-------------|------|-------|-------|---------------------|--------------|-----------------|--------------|
|                      |             |      |       |       | $\mathcal{R}Oxf$    | <i>R</i> Par | ROxf            | <i>R</i> Par |
| GeM-Siamese [37, 35] | SfM-120k    | 2048 | 87.8  | 92.7  | 64.7                | 77.2         | 38.5            | 56.3         |
| SOLAR [28]           | GLDv1-noisy | 2048 | _     | _     | 69.9                | 81.6         | 47.9            | 64.5         |
| DELG [5]             | GLDv1-noisy | 2048 | _     | _     | 73.2                | 82.4         | 51.2            | 64.7         |
| GLDv2 [53] (Weyand)  | GLDv2-clean | 2048 | —     | —     | 74.2                | 84.9         | 51.6            | 70.3         |
| GLAM (Ours)          | NC-clean    | 512  | 77.8  | 85.8  | 51.6                | 68.1         | 20.9            | 44.7         |
|                      | GLDv1-noisy | 512  | 92.8  | 95.0  | 73.7                | 83.5         | 49.8            | <b>69.4</b>  |
|                      | GLDv2-noisy | 512  | 93.3  | 95.3  | 75.7                | 86.0         | 53.1            | 73.8         |
|                      | GLDv2-clean | 512  | 94.2  | 95.6  | <b>78.6</b>         | 88.5         | 60.2            | 76.8         |

All use ResNet101-GeM. Red: best results. Blue: GLAM higher than DELG on GLDv1-noisy

#### State of the art comparisons

| Method               | TRAIN SET   | DIM  | Oxf5k | Par6k | $\mathcal{R}Medium$ |                   | $\mathcal{R}$ Hard |                   |
|----------------------|-------------|------|-------|-------|---------------------|-------------------|--------------------|-------------------|
|                      |             |      |       |       | $\mathcal{R}Oxf$    | $\mathcal{R}$ Par | ROxf               | $\mathcal{R}$ Par |
| GeM-Siamese [37, 35] | SfM-120k    | 2048 | 87.8  | 92.7  | 64.7                | 77.2              | 38.5               | 56.3              |
| SOLAR [28]           | GLDv1-noisy | 2048 | _     | _     | 69.9                | 81.6              | 47.9               | 64.5              |
| DELG [5]             | GLDv1-noisy | 2048 | _     | _     | 73.2                | 82.4              | 51.2               | 64.7              |
| GLDv2 [53] (Weyand)  | GLDv2-clean | 2048 | —     | —     | 74.2                | 84.9              | 51.6               | 70.3              |
| GLAM (Ours)          | NC-clean    | 512  | 77.8  | 85.8  | 51.6                | 68.1              | 20.9               | 44.7              |
|                      | GLDv1-noisy | 512  | 92.8  | 95.0  | 73.7                | 83.5              | 49.8               | <b>69.4</b>       |
|                      | GLDv2-noisy | 512  | 93.3  | 95.3  | 75.7                | 86.0              | 53.1               | 73.8              |
|                      | GLDv2-clean | 512  | 94.2  | 95.6  | <b>78.6</b>         | 88.5              | 60.2               | <b>76.8</b>       |

All use ResNet101-GeM. Red: best results. Blue: GLAM higher than DELG on GLDv1-noisy

#### Effect of attention modules

| Method                   | Oxf5k        | Par6k        | $\mathcal{R}$ Medium |                  | ${\cal R}{ m Hard}$ |                  |                                                               |
|--------------------------|--------------|--------------|----------------------|------------------|---------------------|------------------|---------------------------------------------------------------|
|                          |              |              | $\mathcal{R}Oxf$     | $\mathcal{R}Par$ | $\mathcal{R}Oxf$    | $\mathcal{R}Par$ | -                                                             |
| GLAM baseline            | 91.9         | 94.5         | 72.8                 | 84.2             | 49.9                | 69.7             | Local channel/spatial attention                               |
| +local-channel           | 91.3         | 95.3         | 72.2                 | 85.8             | 48.3                | 73.1             | Sometimes harmful                                             |
| +local-spatial<br>+local | 91.0<br>91.2 | 95.1<br>95.4 | 72.1<br>73.7         | 85.3<br>86.5     | 48.3<br>52.6        | 71.9<br>75.0     | <ul><li>when used alone</li><li>But beneficial when</li></ul> |
| +global-channel          | 92.5         | 94.4         | 73.3                 | 84.4             | 49.8                | 70.1             | used together                                                 |
| +global-spatial          | 92.4         | 95.1         | 73.2                 | 86.3             | 50.0                | 72.7             | (+IOCal)                                                      |
| +global                  | 92.3         | 95.3         | 77.2                 | 86.7             | 57.4                | 75.0             | _                                                             |
| +global+local            | 94.2         | 95.6         | 78.6                 | 88.5             | 60.2                | 76.8             |                                                               |

110

#### Effect of attention modules

| Method                                        | Oxf5k                | Par6k                | $\mathcal{R}$ Medium |                      | ${\cal R}{ m Hard}$  |                      |                                                                                              |
|-----------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------------------------------------------------------------------|
|                                               | 0 0                  |                      | $\mathcal{R}Oxf$     | $\mathcal{R}Par$     | $\mathcal{R}Oxf$     | $\mathcal{R}Par$     | -                                                                                            |
| GLAM baseline                                 | 91.9                 | 94.5                 | 72.8                 | 84.2                 | 49.9                 | 69.7                 |                                                                                              |
| +local-channel<br>+local-spatial              | 91.3<br>91.0         | 95.3<br>95.1         | 72.2<br>72.1         | 85.8<br>85.3         | 48.3<br>48.3         | 73.1<br>71.9         | -                                                                                            |
| +local                                        | 91.2                 | 95.4                 | 73.7                 | 86.5                 | 52.6                 | 75.0                 | Global channel/spatial attention                                                             |
| +global-channel<br>+global-spatial<br>+global | 92.5<br>92.4<br>92.3 | 94.4<br>95.1<br>95.3 | 73.3<br>73.2<br>77.2 | 84.4<br>86.3<br>86.7 | 49.8<br>50.0<br>57.4 | 70.1<br>72.7<br>75.0 | <ul> <li>mostly beneficial even<br/>when used alone</li> <li>Impressive gain when</li> </ul> |
| +global+local                                 | 94.2                 | 95.6                 | 78.6                 | 88.5                 | 60.2                 | 76.8                 | used together<br>(+global)                                                                   |

both attention

000

### Effect of attention modules

| Method          | Oxf5k | Par6k | $\mathcal{D}$ |        | $\mathcal{D}$ | $\frac{\partial \mathcal{D}}{\partial \mathcal{D}}$ |                                                                     |
|-----------------|-------|-------|---------------|--------|---------------|-----------------------------------------------------|---------------------------------------------------------------------|
|                 |       |       | KUXI          | /VL di | KUXI          | /VL ql                                              |                                                                     |
| GLAM baseline   | 91.9  | 94.5  | 72.8          | 84.2   | 49.9          | 69.7                                                |                                                                     |
| +local-channel  | 91.3  | 95.3  | 72.2          | 85.8   | 48.3          | 73.1                                                |                                                                     |
| +local-spatial  | 91.0  | 95.1  | 72.1          | 85.3   | 48.3          | 71.9                                                |                                                                     |
| +local          | 91.2  | 95.4  | 73.7          | 86.5   | 52.6          | 75.0                                                |                                                                     |
| +global-channel | 92.5  | 94.4  | 73.3          | 84.4   | 49.8          | 70.1                                                |                                                                     |
| +global-spatial | 92.4  | 95.1  | 73.2          | 86.3   | 50.0          | 72.7                                                |                                                                     |
| +global         | 92.3  | 95.3  | 77.2          | 86.7   | 57.4          | 75.0                                                | global+local attention:                                             |
| +global+local   | 94.2  | 95.6  | 78.6          | 88.5   | 60.2          | 76.8                                                | <ul> <li>Further improvement</li> <li>Shows necessity of</li> </ul> |

#### Conclusions

- Novel approach for extracting global and local contextual information using attention mechanisms operating on both spatial and channel dimensions
- Comprehensive study and empirical evaluation of all four forms of attention for instance-level image retrieval
- Maximum gain when all forms are present

# Thank you!