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Deep Metric Learning

• GOAL – Learning a discriminative representation that generalizes to unseen classes.

• HOW? – Intra-class embeddings are pulled closer and inter-class embeddings are pushed apart.

• MOTIVATION – Classes during training and inference are different, interpolation-based data 
augmentation e.g. mixup plays significant role.
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Interpolation for pairwise loss functions 

[Ko & Gu, CVPR’20, Gu et al., AAAI’21, Kalantidis et al., NeurIPS’20]

MoCHiProxy Synthesis

Interpolates between classes, applying to 
proxy-based losses only.

risks synthesizing false negatives when 
the interpolation factor λ is close to 0 or 1.

Interpolate pairs of embeddings in a 
deterministic way within the same class.

Do not perform label interpolation.

Interpolates anchor with negative
embeddings.

do not interpolate labels, chooses 
λ ∈ [0, 0.5] to avoid false negatives.

Embedding Expansion



what is a proper way to define and interpolate labels
for deep metric learning ?
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Metrix



• Mixup: a data augmentation technique that interpolates between two examples (input or feature) 
and its corresponding labels.

Improving Representations Using Mixup

[Zhang et al., ICLR 2018, Verma et al., ICML 2019]

λ ∼ Beta(𝛼, 𝛼)
mix! 𝑎, 𝑏 = λa + 1 − λ 𝑏′

𝑥
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Loss



• Additive losses e.g., Contrastive and non-additive e.g., Multi-similarity involve a sum over 
positives 𝑃 𝑎 and a sum over negatives N 𝑎 .

Generic Loss Formulation

Table 1 of our paper, shows the values of each of these terms for different loss functions.

sum over positives sum over negatives
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non-linear functions
(for non-additive losses)

Table 1 of our paper, shows the values of each of these terms for different loss functions.



• In metric learning, positives 𝑃(𝑎) and negatives N(𝑎) of anchor 𝑎 have the same or different class label 
as the anchor.

• We assign binary class label 𝑦 ∈ 0,1 ∀ 𝑃 𝑎 ∪ 𝑁(𝑎) s.t. 𝑦 = 1 for positives and 𝑦 = 0 for negatives.

Generic Loss Formulation

𝑦 is binary, only one of the two 
contributions is nonzero.



• Given𝑀 𝑎 which is the possible choices of mixing pairs (positive-positive or positive-negative or 
negative-negative), the labeled mixed embeddings is 

𝑉 𝑎 = {𝑓- 𝑥, 𝑥. , mix- 𝑦, 𝑦. ∶ ( 𝑥, 𝑦 , 𝑥., 𝑦. ∈ 𝑀(𝑎)}

Interpolating Labels Using Generic Formulation

𝑦 ∈ [0,1], both contributions
are nonzero.



Comparison With Other Mixing Methods

[Hadsell et al., CVPR’ 06; Wah et al.,2011; Krause et al., ICCVW’13; Oh Song et al., CVPR’16; Liu et al., CVPR’16; Kalantidis et al., NeurIPS’20; Lee et al., ICLR’21 ]
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How Does Mixup Improve Representations?

• Introduce a new evaluation metric - utilization and show that a representation more appropriate for 
test classes is implicitly learned during exploration of the embedding space in the presence of mixup.
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