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Deep Metric Learning

* GOAL - Learning a that generalizes to unseen classes.

« HOW? — Intra-class embeddings are closer and inter-class embeddings are apart.

* MOTIVATION - Classes during training and inference are , Interpolation-based data
augmentation e.g. mixup plays role.
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Interpolation for pairwise loss functions
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[Ko & Gu, CVPR’20, Gu et al., AAAI’21, Kalantidis ef al., NeurIPS’20]



what is a proper way to and
for deep metric learning ?



what 1s a proper way to define and interpolate labels
for deep metric learning ?
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Improving Representations Using Mixup

* Mixup: a data augmentation technique that interpolates between two examples (input or feature)

and its corresponding labels,
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A ~ Beta(a, a)
mix,(a,b) =2Aa+ (1 —A)b’

[Zhang et al., ICLR 2018, Verma et al., ICML 2019]



Generic Loss Formulation

» Additive losses e.g., Contrastive and non-additive e.g., Multi-similarity involve a

P(a) and N(a).
[
tas0) =7 ot || X o*(s(ap) +a—q > o (s(am)
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sum over positives sum over negatives

Table 1 of our paper, shows the values of each of these terms for different loss functions.
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* They also involve a
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of similarity s(a,p) V p € P(a) and an increasing
function of similarity s(a,n) V n € N(a).
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Generic Loss Formulation

» Additive losses e.g., Contrastive and non-additive e.g., Multi-similarity involve a
P(a) and N(a).

» They also involve a of similarity s(a,p) V p € P(a) and an increasing
function of similarity s(a,n) V n € N(a).
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(for non-additive losses)

Table 1 of our paper, shows the values of each of these terms for different loss functions.



Generic Loss Formulation

 In metric learning, positives P(a) and negatives N(a) of anchor a have the or class label
as the anchor.

* We assign binary class label y € {0,1} V P(a) U N(a) s.t. and

la;0):=71|o" Z yot(s(a,z)) | +0~ Z (1—1y)o (s(a,x))

(z,y)€U(a (z,y)€U(a)

y 1s binary,
contributions is nonzero.



Interpolating Labels Using Generic Formulation

* Given M(a) which is the (positive-positive or positive-negative or
negative-negative), the 1S

V(a) = {filx,x"), mix(y,y") : ((x,y), (x",y') € M(a)}

0a;0) =7 (a+ ( Z yp™ (s(a,v)) ) ( Z . s(a,v)) ))
(v,y)€V(a) (v,9)€V(a

y € [0,1],
arec nonzero



Comparison With Other Mixing Methods
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[Hadsell et al., CVPR’ 06; Wah et al.,2011; Krause et al., ICCVW’13; Oh Song et al., CVPR’16; Liu et al., CVPR’16; Kalantidis et al., NeurIPS’20; Lee et al., ICLR’21 ]



How Does Mixup Improve Representations?

* Introduce a new evaluation metric - and show that a representation more appropriate for
test classes 1s implicitly learned during in the presence of mixup.
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