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AlignMixup: Improving Representations By 
Interpolating Aligned Features



Mixup improves generalization

• Interpolates between pairs of examples (input/feature) and its target labels.

[Zhang et al., ICLR 2018]

λ ∼ Beta(𝛼, 𝛼)
mix! 𝑎, 𝑏 = λa + 1 − λ 𝑏′



Mixup improves generalization

• Interpolates between pairs of examples (input/feature) and its target labels.

• Flattens class representations, reduces overconfident incorrect predictions, and smoothens decision boundaries.

[Zhang et al., ICLR 2018; Verma et al., ICML 2018]

λ ∼ Beta(𝛼, 𝛼)
mix! 𝑎, 𝑏 = λa + 1 − λ 𝑏′
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Existing mixup methods

[Kim et al., ICLR 2021; Uddin et al., ICLR 2021]

Co-Mixup SaliencyMix

interpolates between the best 
combination of salient regions.

optimization is 
computationally expensive.

interpolates between an image patch 
computed using saliency with the target image.

images are unnatural and
an overlay of one image onto another



What is a good interpolation of images?

AlignMixup
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AlignMixup: natural way of interpolation using deformation 

• MOTIVATION - Deformation a natural way of interpolating images, one image may deform into another, 
in a continuous way. 

• Interpolated points that smoothly traverse the underlying manifold, capture salient characteristics.

[Berthelot et al., ICLR 2019; Bengio et al., 2013]

source target



AlignMixup: interpolating aligned features

• Investigate geometric alignment for mixup, based on semantic correspondences in the feature space.

• Aligning features results in learning invariances [Choy et al., NIPS 2016]. 

• Deform objects across classes essentially populating the feature space between manifolds.



AlignMixup: interpolating aligned features
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AlignMixup: aligning feature tensors
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AlignMixup: aligning feature tensors
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AlignMixup: aligning feature tensors

Sinkhorn
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AlignMixup: aligning feature tensors

Sinkhorn
𝑒"#/%

𝑅 = 𝑟𝑃∗

𝑟 = ℎ × 𝑤 of feature 𝐴 (𝐴')

𝐀′

𝐀

pairwise
distances (𝑀)

𝑃∗

Assignment matrix 𝑅

𝐀

𝐀′



AlignMixup: aligning feature tensors

Assignment matrix 𝑅
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AlignMixup: interpolating aligned feature tensors
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AlignMixup: visualizing alignment
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AlignMixup: visualizing alignment
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Image Classification
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[additional results in the paper]



Weakly-Supervised Object Localization
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See you on 
24th June - Poster session 4.2!!


