

What to Hide from Your Students: Attention-Guided Masked Image Modeling

Authors: I. Kakogeorgiou, S. Gidaris, B. Psomas, Y. Avrithis, A. Bursuc, K. Karantzalos, N. Komodakis

Narrator: Ioannis Kakogeorgiou

Code: https://github.com/gkakogeorgiou/attmask

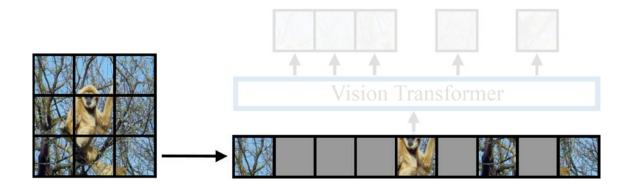
Scope: Self-supervised learning of Vision Transformers (ViT) via Masked Image Modeling (MIM)

- Divide an input image into patches tokens
- Mask a portion of the input patch tokens
- Train a Vision Transformer to reconstruct them



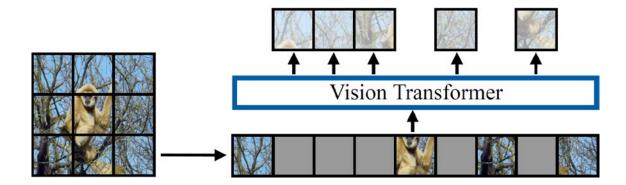
Scope: Self-supervised learning of Vision Transformers (ViT) via Masked Image Modeling (MIM)

- Divide an input image into patches tokens
- Mask a portion of the input patch tokens
- Train a Vision Transformer to reconstruct them



Scope: Self-supervised learning of Vision Transformers (ViT) via Masked Image Modeling (MIM)

- Divide an input image into patches tokens
- Mask a portion of the input patch tokens
- Train a Vision Transformer to reconstruct them

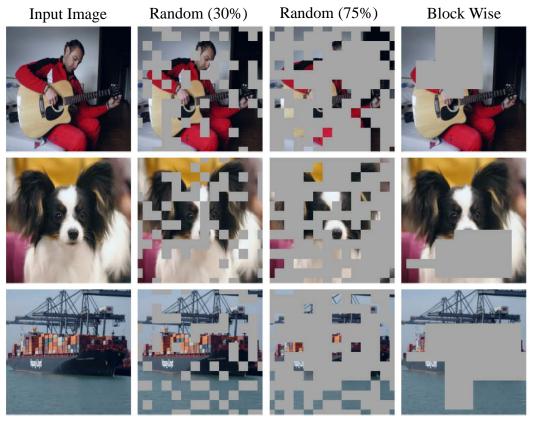


Focus: Which patch tokens to mask?

• Not well explored; prior works use (block-wise) random token masking

Focus: Which patch tokens to mask?

- Not well explored; prior works use (block-wise) random token masking
 - Less likely to hide "interesting" parts → **easy reconstruction**
 - Compensating with extreme masking (e.g., 75% of tokens) → overly aggressive

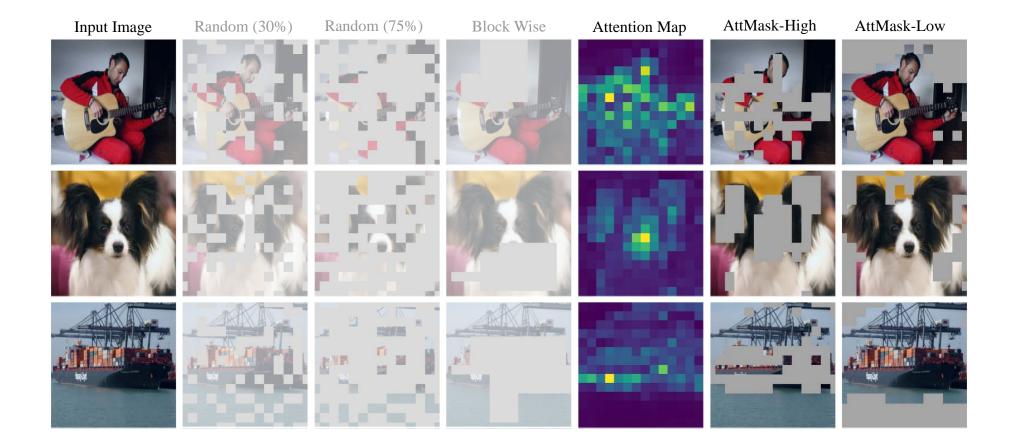


He et al. Masked Autoencoders Are Scalable Vision Learners CVPR, 2022.

Bao et al. BEiT: BERT Pre-Training of Image Transformers ICLR, 2022.

Leverage ViT's self-attention to mask tokens

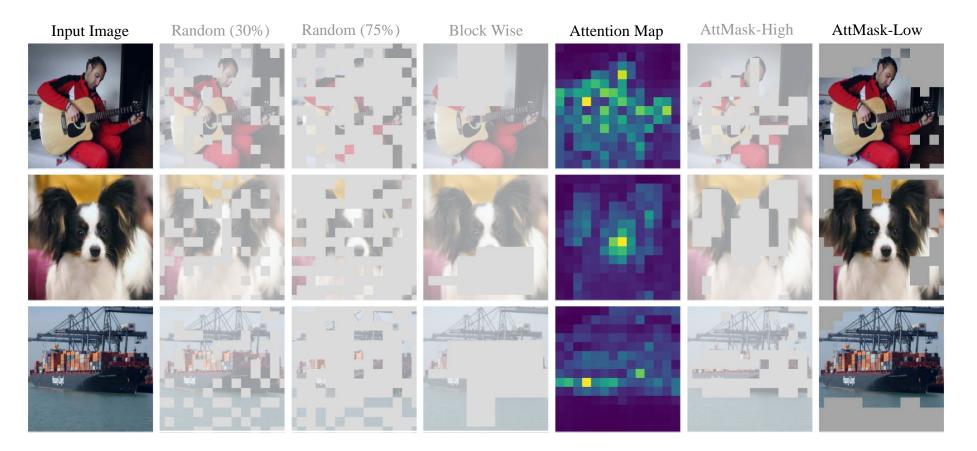
Ę



Leverage ViT's self-attention to mask tokens

Ę

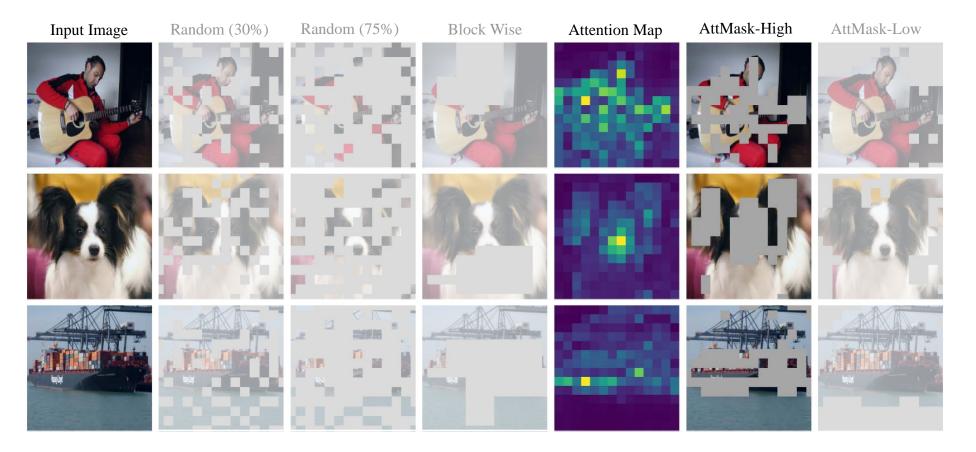
- × **AttMask-Low**: masks low-attended tokens (essentially background)
 - \rightarrow very easy reconstruction task \rightarrow degrades performance



Leverage ViT's self-attention to mask tokens

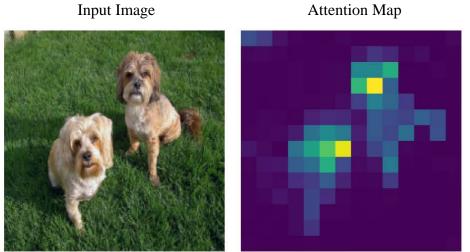
Ē

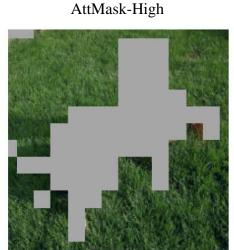
- ✓ AttMask-High: masks highly-attended tokens (essentially foreground)
 - \rightarrow very challenging reconstruction task \rightarrow boosts performance



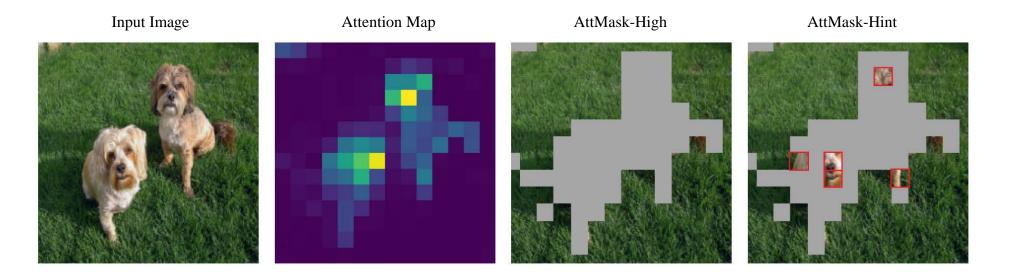
- Leverage ViT's self-attention to mask tokens
 - ✓ AttMask-High: masks highly-attended tokens (essentially foreground)
 → very challenging reconstruction task → boosts performance

Perhaps overly aggressive for high mask ratios

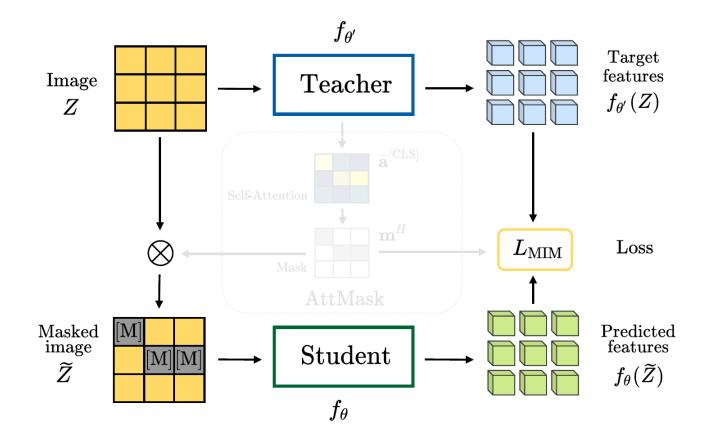




- Leverage ViT's self-attention to mask tokens
 - ✓ AttMask-High: masks highly-attended tokens (essentially foreground)
 → very challenging reconstruction task → boosts performance
 - ✓ **AttMask-Hint:** masks highly-attended tokens but leaves some hints
 - \rightarrow provides hints for the identity of the masked object \rightarrow boosts performance



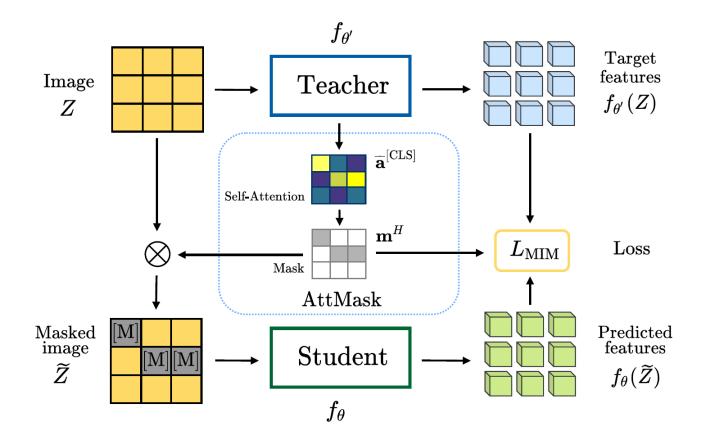
Incorporating AttMask into distillation-based methods



- We exhibit AttMask in the context of distillation-based MIM, such as iBOT [1]
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task
- AttMask thus incurs zero additional cost

[1] Zhou et al. iBOT: Image BERT Pre-training with Online Tokenizer ICLR, 2022

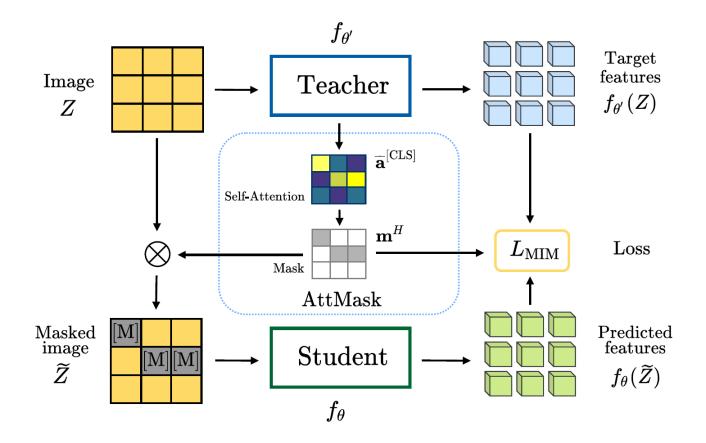
Incorporating AttMask into distillation-based methods



- We exhibit AttMask in the context of distillation-based MIM, such as iBOT [1]
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task
- AttMask thus incurs zero additional cost

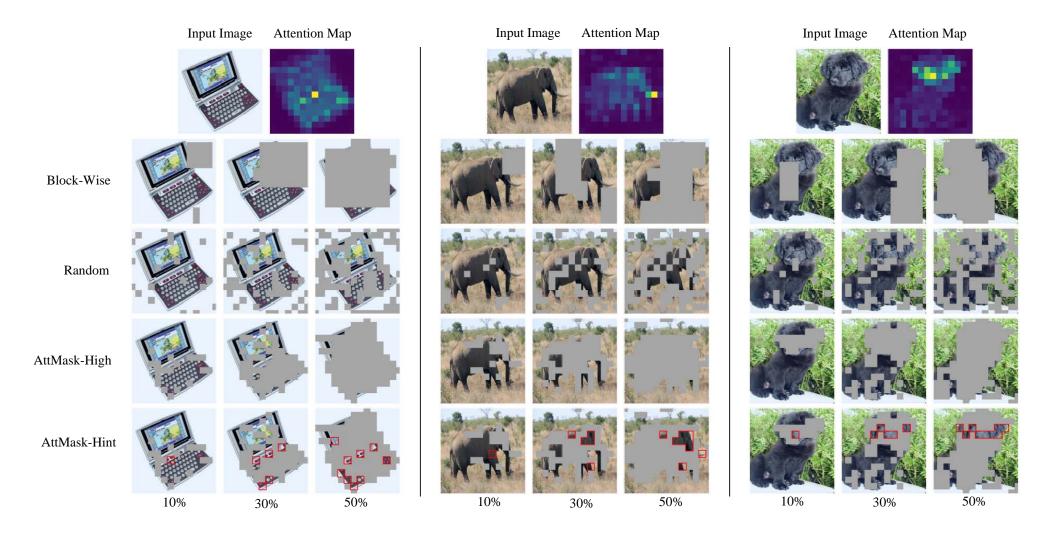
[1] Zhou et al. iBOT: Image BERT Pre-training with Online Tokenizer ICLR, 2022

Incorporating AttMask into distillation-based methods



- We exhibit AttMask in the context of distillation-based MIM, such as iBOT [1]
- The teacher transformer encoder sees the entire image and generates the attention map
- The student sees only the masked image and solves the reconstruction task
- AttMask thus incurs zero additional cost

Qualitative examination of masking strategies

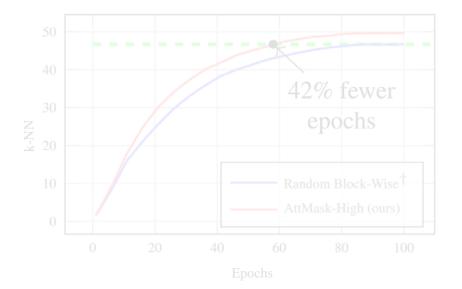


Evaluating token masking strategies by pre-training on 20% of ImageNet-1k

Top-1 accuracy for k-NN and linear probing on ImageNet validation set as well as fine-tuning on CIFAR10/100.

IBOT MASKING	Ratio (%)	IMAGI	eNet-1k	CIFAR10	CIFAR100
	$75 \\ 10-50$ $) \times 10-50$ $) \checkmark 10-50$	k-NN	LINEAR	Fine-	ΓUNING
Random Block-Wise [†]	75	46.7	56.4	98.0	86.0
Random [‡]		47.3	55.5	97.7	85.5
Random		47.8	56.7	98.0	86.1
AttMask-Low (ours) >	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours) +		49.5	57.5	98.1	86.6
AttMask-High (ours) +		49.7	57.9	98.2	86.6

^{†:} default iBOT masking strategy from BEiT ‡: aggressive random masking strategy from MAE



✓ AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing

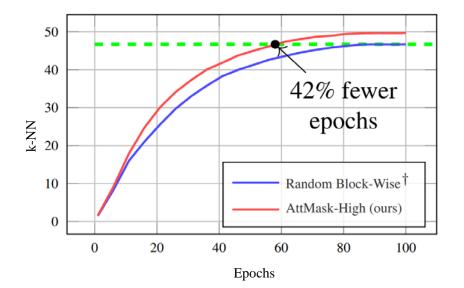
✓ AttMask-High accelerates the learning process

Evaluating token masking strategies by pre-training on 20% of ImageNet-1k

Top-1 accuracy for k-NN and linear probing on ImageNet validation set as well as fine-tuning on CIFAR10/100.

IBOT MASKING	Ratio (%)	IMAGI	eNet-1k	CIFAR10	CIFAR100
	$ \begin{array}{r} 75 \\ 10-50 \\ rs) \times 10-50 \\ rs) \checkmark 10-50 \end{array} $	k-NN LINEAR		Fine-	ΓUNING
Random Block-Wise [†]	75	46.7	56.4	98.0	86.0
Random [‡]		47.3	55.5	97.7	85.5
Random		47.8	56.7	98.0	86.1
AttMask-Low (ours) >	10-50	44.0	53.4	97.6	84.6
AttMask-Hint (ours) +		49.5	57.5	98.1	86.6
AttMask-High (ours) +		49.7	57.9	98.2	86.6

†: default iBOT masking strategy from BEiT ‡: aggressive random masking strategy from MAE



✓ AttMask-High improves iBOT by +3% on k-NN and +1.5% on linear probing

✓ AttMask-High accelerates the learning process

Evaluating by pre-training on different percentage (%) of ImageNet-1k for 100 epochs

Top-1 k-NN accuracy on ImageNet-1k validation for iBOT pre-training on different percentage (%) of ImageNet-1k						
% ImageNet-1k	5	10	20	100		
Random Block-Wise [†] AttMask-High (ours)						

†: default iBOT masking strategy from BEiT

Fop-1 accuracy on ImageNet validation set. (a) k-NN and linear probing using the full mageNet training set; (b) k-NN using only $v \in \{1, 5, 10, 20\}$ examples per class. Preraining on 100% ImageNet-1k for 100 epochs.

Method	F	ULL	FEW EXAMPLES			
MILINOD	k-NN	LINEAR	$\nu = 1$ 5 10 20			
DINO	70.9	74.6				
MST	72.1	75.0				
iBOT	71.5	74.4	32.9 47.6 52.5 56.4			
iBOT+AttMask-High	72.5	75.7	37.1 51.3 55.7 59.1			
iBOT+AttMask-Hint	72.8	76.1	37.6 52.2 56.4 59.6			

Improved performance when:

✓ Pretraining with fewer data

✓ Pretraining on the full ImageNet-1k (+1.3% on k-NN and +1.5% on linear probing)

✓ Evaluating using only 1, 5, 10 or 20 samples per class for the k-NN classifier (more than +3% on low shot k-NN)

Evaluating by pre-training on different percentage (%) of ImageNet-1k for 100 epochs

Top-1 k-NN accuracy on ImageNet-1k validation for iBOT pre-training on different percentage (%) of ImageNet-1k						
% ImageNet-1k	5	10	20	100		
Random Block-Wise [†] AttMask-High (ours)						

†: default iBOT masking strategy from BEiT

Top-1 accuracy on ImageNet validation set. (a) k-NN and linear probing using the full ImageNet training set; (b) k-NN using only $v \in \{1, 5, 10, 20\}$ examples per class. Pre-training on 100% ImageNet-1k for 100 epochs.

Method	Full		Few Examples			
	k-NN	LINEAR	$\nu = 1$. 5	10	20
DINO	70.9	74.6				
MST	72.1	75.0				
iBOT	71.5	74.4	32.9	47.6	52.5	56.4
iBOT+AttMask-High	n 72.5	75.7	37.1	51.3	55.7	59.1
iBOT+AttMask-Hint	72.8	76.1	37.6	52.2	56.4	59.6

Improved performance when:

✓ Pretraining with fewer data

✓ Pretraining on the full ImageNet-1k (+1.3% on k-NN and +1.5% on linear probing)

✓ Evaluating using only 1, 5, 10 or 20 samples per class for the k-NN classifier (more than +3% on low shot k-NN)

Evaluating by pre-training on different percentage (%) of ImageNet-1k for 100 epochs

Top-1 k-NN accuracy on ImageNet-1k validation for iBOT pre-training on different percentage (%) of ImageNet-1k						
% ImageNet-1k	5	10	20	100		
Random Block-Wise [†] AttMask-High (ours)						

†: default iBOT masking strategy from BEiT

Top-1 accuracy on ImageNet validation set. (a) k-NN and linear probing using the full ImageNet training set; (b) k-NN using only $v \in \{1, 5, 10, 20\}$ examples per class. Pre-training on 100% ImageNet-1k for 100 epochs.

Method	Full		FEW EXAMPLES			
	k-NN	LINEAR	$ \nu = 1$. 5	10	20
DINO	70.9	74.6				
MST	72.1	75.0				
iBOT	71.5	74.4	32.9	47.6	52.5	56.4
iBOT+AttMask-High	72.5	75.7	37.1	51.3	55.7	59.1
iBOT+AttMask-Hint	72.8	76.1	37.6	52.2	56.4	59.6

Improved performance when:

- ✓ Pretraining with fewer data
- ✓ Pretraining on the full ImageNet-1k (+1.3% on k-NN and +1.5% on linear probing)
- ✓ Evaluating using only 1, 5, 10 or 20 samples per class for the k-NN classifier (more than +3% on low shot k-NN)

Thank you

What to Hide from Your Students: Attention-Guided Masked Image Modeling

Wednesday 26/10

ECCV Posters Session 2.B

Paper ID #1439

Posterboard #77

Paper: https://arxiv.org/abs/2203.12719

Code: https://github.com/gkakogeorgiou/attmask