Generating Part-Aware Editable 3D Shapes without 3D Supervision

Konstantinos Tertikas ^{1, 3} Despoina Paschalidou ² Boxiao Pan ² Jeong Joon Park ² Mikaela Angelina Uy ²

Ioannis Emiris ^{3, 1} Yannis Avrithis ⁴ Leonidas J. Guibas ²

¹ National and Kapodistrian University of Athens ² Stanford University ³ ATHENA Research Center ⁴ Institute of Advanced Research in Artificial Intelligence (IARAI)

CVPR, 2023

TUE-PM-032

Shape editing involves **making local changes to the shape and appearance of different regions** of an object. A user may want to:

• Apply rigid & non-rigid transformations on specific areas of the object.

Move Bucket

Shape editing involves **making local changes to the shape and appearance of different regions** of an object. A user may want to:

• Apply rigid & non-rigid transformations on specific areas of the object.

Scale Cockpit

Shape editing involves **making local changes to the shape and appearance of different regions** of an object. A user may want to:

- Apply rigid & non-rigid transformations on specific areas of the object.
- Change the appearance of an object part.

Color Bucket

- Apply rigid & non-rigid transformations on specific areas of the object.
- Change the appearance of an object part.
- Combine parts from different objects.

- Apply rigid & non-rigid transformations on specific areas of the object.
- Change the appearance of an object part.
- Combine parts from different objects.

- Apply rigid & non-rigid transformations on specific areas of the object.
- Change the appearance of an object part.
- Combine parts from different objects.

- Apply rigid & non-rigid transformations on specific areas of the object.
- Change the appearance of an object part.
- Combine parts from different objects.

- Apply rigid & non-rigid transformations on specific areas of the object.
- Change the appearance of an object part.
- Combine parts from different objects.

NeRF-based Generative Models

NeRF-based Generative Models

High quality 3D meshes2D Supervision

NeRF-based Generative Models

High quality 3D meshes
 2D Supervision
 X No explicit part-level control

NeRF-based Generative Models

High quality 3D meshes
 2D Supervision
 X No explicit part-level control

Part-based Generative Models

NeRF-based Generative Models

High quality 3D meshes
 2D Supervision
 X No explicit part-level control

Part-based Generative Models

Explicit part-level control

NeRF-based Generative Models

High quality 3D meshes
 2D Supervision
 X No explicit part-level control

Part-based Generative Models

Explicit part-level control
 X 3D Supervision
 X No texture information

• 3D part-aware generative model

- 3D part-aware generative model
- Can perform local shape & appearance edits

- 3D part-aware generative model
- Can perform local shape & appearance edits
- Trained only using **posed images & object masks**

- 3D part-aware generative model
- Can perform local shape & appearance edits
- Trained only using posed images & object masks

NeRFs map a 3D point $\mathbf{x} \in \mathbb{R}^3$ and a viewing direction $\mathbf{d} \in \mathbb{S}^2$ to a color $\mathbf{c} \in \mathbb{R}^3$ and a volume density $\sigma \in \mathbb{R}^+$.

NeRFs map a 3D point $\mathbf{x} \in \mathbb{R}^3$ and a viewing direction $\mathbf{d} \in \mathbb{S}^2$ to a color $\mathbf{c} \in \mathbb{R}^3$ and a volume density $\sigma \in \mathbb{R}^+$.

NeRFs map a 3D point $\mathbf{x} \in \mathbb{R}^3$ and a viewing direction $\mathbf{d} \in \mathbb{S}^2$ to a color $\mathbf{c} \in \mathbb{R}^3$ and a volume density $\sigma \in \mathbb{R}^+$.

The **rendered color** for a ray r is calculated by accumulating the predicted $\{\mathbf{c}_i^r, \sigma_i^r\}^N$ for N sampled points $\mathcal{X}_r = \{\mathbf{x}_i^r\}_{i=1}^N$ along r:

$$\hat{C}(r) = \sum_{i=1}^N \exp\Big(-\sum_{i < j} \pmb{\sigma_j^r} \delta_j^r\Big)(1 - \exp(-\pmb{\sigma_i^r} \delta_i^r)) \mathbf{c}_i^r$$

NeRFs map a 3D point $\mathbf{x} \in \mathbb{R}^3$ and a viewing direction $\mathbf{d} \in \mathbb{S}^2$ to a color $\mathbf{c} \in \mathbb{R}^3$ and a volume density $\sigma \in \mathbb{R}^+$.

The **rendered color** for a ray r is calculated by accumulating the predicted $\{\mathbf{c}_i^r, \sigma_i^r\}^N$ for N sampled points $\mathcal{X}_r = \{\mathbf{x}_i^r\}_{i=1}^N$ along r:

$$\hat{C}(r) = \sum_{i=1}^N \exp\Big(-\sum_{i < j} \pmb{\sigma_j^r} \delta_j^r\Big)(1 - \exp(-\pmb{\sigma_i^r} \delta_i^r)) \mathbf{c_i^r}$$

or equally

$$\hat{C}(r) = \sum\limits_{i=1}^N o_i^r \prod\limits_{j < i} \left(1 - o_j^r
ight) \mathbf{c}_i^r$$

with $o_i^r = 1 - \exp(-\sigma_i^r \delta_i^r)$ the **occupancy value** at point \mathbf{x}_i^r and δ_i^r the distance between two adjacent ray points.

• PartNeRF decomposes a 3D object into *M* parts, each **parametrized as a NeRF**!

- PartNeRF decomposes a 3D object into *M* parts, each parametrized as a NeRF!
- Each part *m* consists of:
 - 1. An affine transformation $\mathcal{T}_m(\mathbf{x}) = \mathbf{R}_m(\mathbf{x} \mathbf{t}_m)$ mapping a point \mathbf{x} to the local coordinate system of the part, where $\mathbf{t}_m \in \mathbb{R}^3$ a translation vector and $\mathbf{R}_m \in \mathrm{SO}(3)$ a rotation matrix.

- PartNeRF decomposes a 3D object into *M* parts, each parametrized as a NeRF!
- Each part *m* consists of:
 - 1. An affine transformation $\mathcal{T}_m(\mathbf{x}) = \mathbf{R}_m(\mathbf{x} \mathbf{t}_m)$ mapping a point \mathbf{x} to the local coordinate system
 - of the part, where $\mathbf{t}_m \in \mathbb{R}^3$ a translation vector and $\mathbf{R}_m \in \mathrm{SO}(3)$ a rotation matrix.
 - 2. A scale vector $\mathbf{s}_m \in \mathbb{R}^3$.

- PartNeRF decomposes a 3D object into *M* parts, each parametrized as a NeRF!
- Each part *m* consists of:
 - 1. An affine transformation $\mathcal{T}_m(\mathbf{x}) = \mathbf{R}_m(\mathbf{x} \mathbf{t}_m)$ mapping a point \mathbf{x} to the local coordinate system of the part, where $\mathbf{t}_m \in \mathbb{R}^3$ a translation vector and $\mathbf{R}_m \in SO(3)$ a rotation matrix.
 - 2. A scale vector $\mathbf{s}_m \in \mathbb{R}^3$.
 - 3. Two latent codes: shape $\mathbf{z}_m^s \in \mathbb{R}^{L_s}$ and texture $\mathbf{z}_m^t \in \mathbb{R}^{L_t}$.

- PartNeRF decomposes a 3D object into *M* parts, each parametrized as a NeRF!
- Each part *m* consists of:
 - 1. An affine transformation $\mathcal{T}_m(\mathbf{x}) = \mathbf{R}_m(\mathbf{x} \mathbf{t}_m)$ mapping a point \mathbf{x} to the local coordinate system of the part, where $\mathbf{t}_m \in \mathbb{R}^3$ a translation vector and $\mathbf{R}_m \in SO(3)$ a rotation matrix.
 - 2. A scale vector $\mathbf{s}_m \in \mathbb{R}^3$.
 - 3. Two latent codes: shape $\mathbf{z}_m^s \in \mathbb{R}^{L_s}$ and texture $\mathbf{z}_m^t \in \mathbb{R}^{L_t}$.
 - 4. Two separate networks, a color network c_{θ}^{m} and an occupancy network o_{θ}^{m} .

• The color network c_{θ}^{m} and the occupancy network o_{θ}^{m} predict the color and occupancy value respectively.

• The color network c_{θ}^{m} and the occupancy network o_{θ}^{m} predict the color and occupancy value respectively.

• To enforce that **each part captures local and continuous regions of the object**, we multiply the occupancy function with an **axis-aligned 3D ellipsoid occupancy function**:

$$h^m_ heta(\mathbf{x}) = o^m_ heta(\mathbf{x}) g^m_ heta(\mathbf{x}),$$
Parts as Neural Radiance Fields

• The color network c_{θ}^{m} and the occupancy network o_{θ}^{m} predict the color and occupancy value respectively.

• To enforce that **each part captures local and continuous regions of the object**, we multiply the occupancy function with an **axis-aligned 3D ellipsoid occupancy function**:

$$h^m_ heta(\mathbf{x}) = o^m_ heta(\mathbf{x}) g^m_ heta(\mathbf{x}),$$

where $g_{\theta}^m(\mathbf{x}) = g(\mathcal{T}_m(\mathbf{x}), \mathbf{s}_m)$ is the occupancy function of the *m*-th ellipsoid.

Parts as Neural Radiance Fields

• The color network c_{θ}^{m} and the occupancy network o_{θ}^{m} predict the color and occupancy value respectively.

• To enforce that **each part captures local and continuous regions of the object**, we multiply the occupancy function with an **axis-aligned 3D ellipsoid occupancy function**:

$$h^m_ heta(\mathbf{x}) = o^m_ heta(\mathbf{x}) g^m_ heta(\mathbf{x}),$$

where $g_{ heta}^m(\mathbf{x}) = g(\mathcal{T}_m(\mathbf{x}), \mathbf{s}_m)$ is the occupancy function of the *m*-th ellipsoid.

• The per-part rendering equation now becomes:

$$\hat{C}_m(r) = \sum_{i=1}^N h^m_ heta(\mathbf{x}^r_i) \prod_{j < i} \left(1 - h^m_ heta(\mathbf{x}^r_j)
ight) \mathbf{c}^m_ heta(\mathbf{x}^r_i)$$

We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

We define the set of rays \mathcal{R}_m as the set of rays that first intersect with the *m*-th part:

$$\mathcal{R}_m = \left\{ r \in \mathcal{R} \; : \; m = rgmin_{k \in \{0 \ldots M\}} \psi_r(k)
ight\}$$

We impose a hard assignment between rays and parts, associating a ray with the first part it itersects.

The rendering equation for the entire object using M NeRFs becomes

$$\hat{C}(r) = \sum_{m=1}^M 1\!\!1_{r\in\mathcal{R}_m} \hat{C}_m(r)$$

We are given a collection of **posed 2D images** of objects in a semantic class, along with the respective **object masks**.

• Decomposition Network: Maps z^s and z^t to M latent codes that control the per-part shape and texture.

- **Decomposition Network:** Maps z^s and z^t to *M* latent codes that control the per-part shape and texture.
- **Structure Network:** Predicts the pose and scale for each part *m*.

- **Decomposition Network:** Maps z^s and z^t to *M* latent codes that control the per-part shape and texture.
- Structure Network: Predicts the pose and scale for each part *m*.

- **Decomposition Network:** Maps \mathbf{z}^s and \mathbf{z}^t to *M* latent codes that control the per-part shape and texture.
- **Structure Network:** Predicts the pose and scale for each part *m*.
- Neural Rendering Network: Renders a 2D image using *M* locally defined NeRFs.

- Decomposition Network: Maps z^s and z^t to M latent codes that control the per-part shape and texture.
- **Structure Network:** Predicts the pose and scale for each part *m*.
- Neural Rendering Network: Renders a 2D image using *M* locally defined NeRFs.

Our objective function \mathcal{L} is composed of 6 terms, and 2 regularizers on the shape and texture embeddings $\mathbf{z}^s, \mathbf{z}^t$:

 $\mathcal{L} = \mathcal{L}_{rgb}(\mathcal{R})$

• Reconstruction Loss: The rendered and ground truth image colors should match.

$$\mathcal{L} = \mathcal{L}_{rgb}(\mathcal{R}) + \mathcal{L}_{mask}(\mathcal{R})$$

- Reconstruction Loss: The rendered and ground truth image colors should match.
- Mask Loss: The rendered and ground truth mask values should match.

$$\mathcal{L} = \mathcal{L}_{rgb}(\mathcal{R}) + \mathcal{L}_{mask}(\mathcal{R}) + \mathcal{L}_{occ}(\mathcal{R})$$

- Reconstruction Loss: The rendered and ground truth image colors should match.
- Mask Loss: The rendered and ground truth mask values should match.
- Occupancy Loss: The generated shape should occupy space.

$$\mathcal{L} = \mathcal{L}_{rgb}(\mathcal{R}) + \mathcal{L}_{mask}(\mathcal{R}) + \mathcal{L}_{occ}(\mathcal{R}) + \mathcal{L}_{cov}(\mathcal{R})$$

- **Reconstruction Loss:** The rendered and ground truth image colors should match.
- Mask Loss: The rendered and ground truth mask values should match.
- Occupancy Loss: The generated shape should occupy space.
- **Coverage Loss:** The parts should be **distributed** along the object.

$$\mathcal{L} = \mathcal{L}_{rgb}(\mathcal{R}) + \mathcal{L}_{mask}(\mathcal{R}) + \mathcal{L}_{occ}(\mathcal{R}) + \mathcal{L}_{cov}(\mathcal{R}) + \mathcal{L}_{overlap}(\mathcal{R})$$

- Reconstruction Loss: The rendered and ground truth image colors should match.
- Mask Loss: The rendered and ground truth mask values should match.
- Occupancy Loss: The generated shape should occupy space.
- **Coverage Loss:** The parts should be **distributed** along the object.
- Overlapping Loss: The parts should not be overlapping.

$$\mathcal{L} = \mathcal{L}_{rgb}(\mathcal{R}) + \mathcal{L}_{mask}(\mathcal{R}) + \mathcal{L}_{occ}(\mathcal{R}) + \mathcal{L}_{cov}(\mathcal{R}) + \mathcal{L}_{overlap}(\mathcal{R}) + \mathcal{L}_{control}(\mathcal{R})$$

- **Reconstruction Loss:** The rendered and ground truth image colors should match.
- Mask Loss: The rendered and ground truth mask values should match.
- Occupancy Loss: The generated shape should occupy space.
- **Coverage Loss:** The parts should be distributed along the object.
- Overlapping Loss: The parts should not be overlapping.
- Control Loss: The parts should be of similar 3D volume.

$$\mathcal{L} = \mathcal{L}_{rgb}(\mathcal{R}) + \mathcal{L}_{mask}(\mathcal{R}) + \mathcal{L}_{occ}(\mathcal{R}) + \mathcal{L}_{cov}(\mathcal{R}) + \mathcal{L}_{overlap}(\mathcal{R}) + \mathcal{L}_{control}(\mathcal{R}) + \left\|\mathbf{z}^{s}\right\|_{2} + \left\|\mathbf{z}^{t}\right\|_{2}$$

- Reconstruction Loss: The rendered and ground truth image colors should match.
- Mask Loss: The rendered and ground truth mask values should match.
- Occupancy Loss: The generated shape should occupy space.
- **Coverage Loss:** The parts should be **distributed** along the object.
- **Overlapping Loss:** The parts should not be overlapping.
- Control Loss: The parts should be of similar 3D volume.

Comparisons with NeRF-based 3D Generative Methods

Comparisons with NeRF-based 3D Generative Methods

Comparisons with Part-Based 3D Generative Methods

Comparisons with Part-Based 3D Generative Methods

Scene-Specific Editing

Shape #1

17.1

Shape #1

Shape #2

17.2

Texture Mixing

Shape #1 Parts

Shape Mixing

Shape #2 Parts

Shape #2

Shape #2

Shape #3

Shape #3

Shape #4

18.4

18.5

Shape #4

Geometry

Shape Generation

• The first part-aware generative model that parameterizes parts as NeRFs.

- The first part-aware generative model that parameterizes parts as NeRFs.
- Our model enables **intuitive part-level control** and a broad range of editing operations not previously possible.

- The first part-aware generative model that parameterizes parts as NeRFs.
- Our model enables **intuitive part-level control** and a broad range of editing operations not previously possible.
- Our model is trained without explicit 3D supervision.

- The first part-aware generative model that parameterizes parts as NeRFs.
- Our model enables **intuitive part-level control** and a broad range of editing operations not previously possible.
- Our model is trained without explicit 3D supervision.

Limitations:

- The first part-aware generative model that parameterizes parts as NeRFs.
- Our model enables **intuitive part-level control** and a broad range of editing operations not previously possible.
- Our model is trained without explicit 3D supervision.

Limitations:

• The quality of generated textures could be improved by employing GAN losses or triplane representations.

- The first part-aware generative model that parameterizes parts as NeRFs.
- Our model enables **intuitive part-level control** and a broad range of editing operations not previously possible.
- Our model is trained without explicit 3D supervision.

Limitations:

- The quality of generated textures could be improved by employing GAN losses or triplane representations.
- The generated parts are not necessarily semantic.

- The first part-aware generative model that parameterizes parts as NeRFs.
- Our model enables **intuitive part-level control** and a broad range of editing operations not previously possible.
- Our model is trained without explicit 3D supervision.

Limitations:

- The quality of generated textures could be improved by employing GAN losses or triplane representations.
- The generated parts are not necessarily semantic.

Project Page: https://ktertikas.github.io/part_nerf CVPR Poster: *TUE-PM-032*