Adaptive Anchor Label Propagation for Transductive Few-Shot Learning

Michalis Lazarou¹, Yannis Avrithis², Guangyu Ren¹ and Tania Stathaki¹

¹Imperial College London, ²IARAI

IEEE International Conference of Image Processing

Kuala Lumpur, Malaysia, October 2023

Imperial College | ↑ ↑ ↑ ↑ ↑ ↑ ↑

What is few-shot learning

• Why is it important?

?

Current approaches in few-shot learning

Relevant literature

- Meta-learning:
 - Optimization based.
 - Metric based.
 - Model based.
- Transfer learning.
- Feature adaptation.
- Data Augmentation.

Utilizing unlabeled data

- Data manifold exploitation:
 - Label propagation.
 - Embedding propagation.
- Iterative pseudo-label selection.
- Class centroid refinement:
 - Soft k-means.
 - Minimizing loss functions.

Motivation

Traditional Label Propagation algorithm

- We investigate the widely popular label propagation algorithm.
- We identify a limitation of label propagation, that the labeled data are fixed and may be in sub optimal positions.

Contributions

- We propose a novel variant of label propagation algorithm named Adaptive Anchor Label Propagation (${f A^2LP}$).
- A²LP optimizes the positions of the labeled data also referred to as labeled anchors.
- A²LP outperforms significantly the traditional label propagation in transductive few-shot learning.

Motivation

Traditional Label Propagation algorithm

- We investigate the widely popular label propagation algorithm.
- We identify a limitation of label propagation, that the labeled data are fixed and may be in sub optimal positions.

Contributions

- We propose a novel variant of label propagation algorithm named Adaptive Anchor Label Propagation (A²LP).
- A^2LP optimizes the positions of the labeled data also referred to as labeled anchors.
- A²LP outperforms significantly the traditional label propagation in transductive few-shot learning.

Problem formulation and definitions

Pre-training stage

- We use publicly available pre-trained networks from published works.
- Base class dataset: $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^I$ where $y_i \in C_{\text{base}}$.
- Network $f_{\theta}: \mathcal{X} \to \mathbb{R}^d$ is trained on D_{base} .

Inference stage

- Novel class dataset D_{novel} with C_{novel} disjoint from C_{base} .
- Assume access to f_{θ} , a support set, S, a query set, Q.
- We focus on transductive few-shot learning, where all S and Q are available at inference at the same time.

Problem formulation and definitions

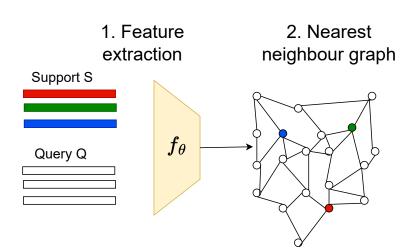
Pre-training stage

- We use publicly available pre-trained networks from published works.
- Base class dataset: $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^I$ where $y_i \in C_{\text{base}}$.
- Network $f_{\theta}: \mathcal{X} \to \mathbb{R}^d$ is trained on D_{base} .

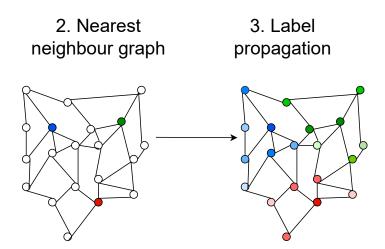
Inference stage

- Novel class dataset D_{novel} with C_{novel} disjoint from C_{base} .
- Assume access to f_{θ} , a support set, S, a query set, Q.
- We focus on transductive few-shot learning, where all S and Q are available at inference at the same time.

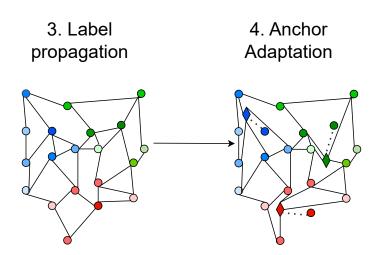
A²LP: Nearest Graph Construction



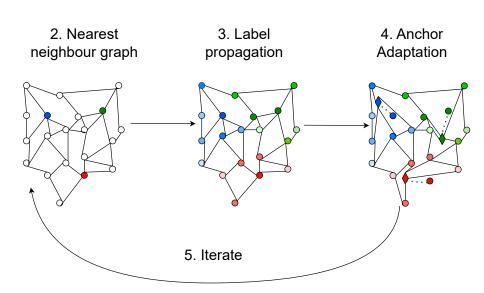
A²LP: Label Propagation



A²LP: Anchor Adaptation



A²LP: Iteration



Experimental results: Implemented baselines comparisons

Algorithm	mini I MAGENET		tieredImageNet				
	1-shot	5-shot	1-shot	5-shot			
RESNET-12							
Prototypical classifier Imprinting+ L_{ce} LP ${f A^2LP}$	$\begin{array}{c} 54.23{\scriptstyle \pm 0.61} \\ 54.53{\scriptstyle \pm 0.61} \\ 59.15{\scriptstyle \pm 0.66} \\ \textbf{64.35}{\scriptstyle \pm 0.77} \end{array}$	$74.98 \scriptstyle{\pm 0.48} \\ 74.31 \scriptstyle{\pm 0.49} \\ 73.50 \scriptstyle{\pm 0.52} \\ \textbf{75.00} \scriptstyle{\pm 0.53}$	$\begin{array}{c} 67.21{\pm}0.72 \\ 67.53{\pm}0.72 \\ 72.67{\pm}0.74 \\ \textbf{80.49}{\pm}0.77 \end{array}$	$85.19{\scriptstyle\pm0.48} \\ 84.86{\scriptstyle\pm0.48} \\ 84.61{\scriptstyle\pm0.53} \\ \textbf{85.80}{\scriptstyle\pm0.51}$			
WIDERESNET-28-10							
Prototypical classifier Imprinting+ L_{ce} LP ${f A^2LP}$	$65.35{\scriptstyle \pm 0.63} \\ 66.07{\scriptstyle \pm 0.62} \\ 69.50{\scriptstyle \pm 0.64} \\ \textbf{76.48}{\scriptstyle \pm 0.75}$	$83.37{\scriptstyle \pm 0.43} \\ 83.34{\scriptstyle \pm 0.42} \\ 81.28{\scriptstyle \pm 0.47} \\ \textbf{83.57}{\scriptstyle \pm 0.45}$	$73.47{\scriptstyle \pm 0.70} \\ 74.07{\scriptstyle \pm 0.69} \\ 78.14{\scriptstyle \pm 0.72} \\ \textbf{82.82}{\scriptstyle \pm 0.73}$	$88.22{\scriptstyle \pm 0.45} \\ 88.55{\scriptstyle \pm 0.43} \\ 87.63{\scriptstyle \pm 0.50} \\ \textbf{88.80} {\scriptstyle \pm 0.46}$			

• A^2LP is significantly outperforming all implemented baselines.

Experimental results: PLC pre-processing

ALGORITHM	<i>mini</i> IMAGENET		tiered IMAGENET		
	1-shot	5-shot	1-shot	5-shot	
	WIDERESNET-28-10				
Prototypical classifier	69.64±0.60	84.61±0.42	77.26±0.65	89.22±0.42	
$Imprint + L_{ce}$	$68.77{\scriptstyle\pm0.60}$	$84.24 \scriptstyle{\pm 0.42}$	$76.13{\scriptstyle\pm0.66}$	$88.95{\scriptstyle\pm0.42}$	
LP	$74.24{\scriptstyle\pm0.66}$	$84.59{\scriptstyle\pm0.44}$	$82.48{\scriptstyle\pm0.70}$	$90.07{\scriptstyle\pm0.45}$	
A^2LP	$\textbf{75.94} \scriptstyle{\pm 0.72}$	$\pmb{85.67} \scriptstyle{\pm 0.42}$	$\textbf{83.68} \scriptstyle{\pm 0.72}$	$90.53 \scriptstyle{\pm 0.43}$	

- PLC: power transform, ℓ_2 -normalization, centering.
- Even when PLC pre-processing is used A²LP is outperforming all baselines.

Experimental results: State of the art

Algorithm	mini I MAGENET		$\it tiered { m Image} { m Net}$				
	1-shot	5-shot	1-shot	5-shot			
RESNET-12							
LR+ICI	66.80	79.26	80.79	87.92			
CAN+Top-k	$67.19{\scriptstyle\pm0.55}$	$80.64{\scriptstyle\pm0.35}$	$73.21{\scriptstyle\pm0.58}$	$84.93 \pm \scriptstyle 0.38$			
DPGN	$67.77{\scriptstyle\pm0.32}$	$84.60{\scriptstyle \pm 0.43}$	$72.45{\scriptstyle\pm0.51}$	$87.24{\scriptstyle\pm0.39}$			
WideResNet-28-10							
EP	70.74±0.85	84.34±0.53	78.50±0.91	88.36±0.57			
SIB	$70.00{\scriptstyle\pm0.60}$	$79.20{\scriptstyle\pm0.40}$	72.90	82.80			
$SIB+E^3BM$	$71.40{\scriptstyle \pm 0.50}$	$81.20{\scriptstyle\pm0.40}$	$75.60{\scriptstyle \pm 0.60}$	$84.30{\scriptstyle\pm0.40}$			
LaplacianShot	$74.86 \scriptstyle{\pm 0.19}$	$84.13{\scriptstyle\pm0.14}$	$80.18 \scriptstyle{\pm 0.21}$	$87.56 \scriptstyle{\pm 0.15}$			
A^2LP	$\textbf{76.48} \scriptstyle{\pm 0.75}$	$83.57{\scriptstyle\pm0.45}$	$82.82{\scriptstyle\pm0.73}$	$88.80{\scriptstyle\pm0.46}$			
A ² LP+PLC	$75.94{\scriptstyle\pm0.72}$	85.67 ±0.42	83.68 ±0.72	90.53 ±0.43			

• Outperforming several state of the art methods.

Conclusion

- We propose a novel variant of label propagation.
- Our algorithm iteratively adapts the labeled anchors.
- Significantly outperforms the traditional algorithm.
- Outperforms several state of the art methods.
- Future directions:
 - Different loss functions.
 - Beyond few-shot learning.

Imperial College |∧R∧| London

Thank you!

https://github.com/MichalisLazarou https://avrithis.net http://www.commsp.ee.ic.ac.uk/~tania/