

Zero-Shot and Few-Shot Video Question Answering with Multi-Modal Prompts

Deniz Engin

Yannis Avrithis

Introduction

Motivation: Inspired by large-scale vision-language model advancements in video tasks through multimodal datasets

<u>Challenges</u> on adapting pretrained models for video-language tasks on limited data

- Visual-language modality gap
- Overfitting & catastrophic forgetting

Recent Works

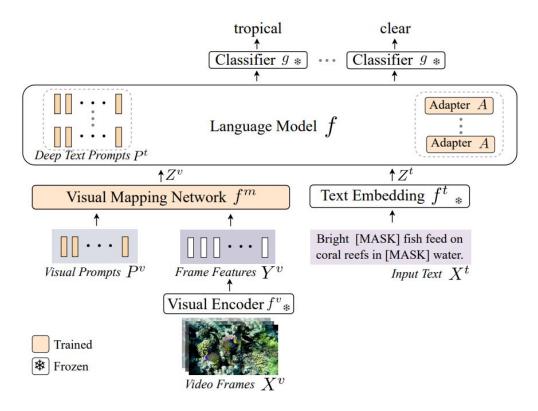
Transformer-based mapping networks
[Mokady et al., arXiv 2021]

- Parameter-efficient adaptation methods
 - Prompt learning [Liu et al., ACL 2022]
 - Adapters [Houlsby et al., ICML 2019]

Our Approach

- Incorporation of visual inputs to a frozen language model using adapter layers [Yang et al., NeurIPS 2022]
- Introducing visual mapping network for summarizing video input while enabling temporal interaction
- Proposing multimodal prompt learning to reduce stored and tuned parameters during few-shot finetuning

ViTiS: VideoQA with Multi-Modal Prompts

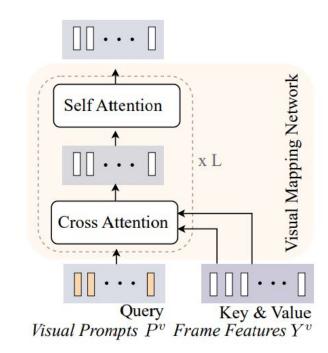


Visual Mapping Network (VPN)

 VPN aligns frame features with text embeddings

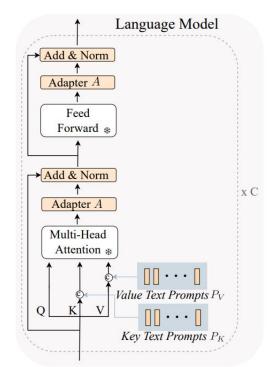
 Learnable visual prompts represent video after iteratively interact with frame features

VPN designed, inspired by Perceiver
[Jaegle et al., ICML 2021]



Language Model

- Learnable text prompts in the key and value of multi-head-attention in each layer of language model [Liu et al., ACL 2022]
- Adapter layer maps tokens to bottleneck dimension with residual connection [Houlsby et al., ICML 2019]
- Inserting adapter layers after each self-attention and feed-forward layer [Yang et al., NeurIPS 2022]



© Concatenation

Zero-Shot VideoQA Results

Метнор	SUBTITLE	#Tra Image	INING VIDEO	MSRVTT-QA	Msvd-QA	ANET-QA	TGIF-QA
CLIP* [Radford et al., ICML 2021]		400M	_	2.1	7.2	1.2	3.6
RESERVE [Zellers et al., CVPR 2022]	\checkmark	-	20M	5.8		_	
LAVENDER [Li et al., CVPR 2023]		3M	2.5M	4.5	11.6	: -	16.7
Flamingo [Alayrac et al., NeurIPS 2022]		2.3B	27M	17.4	35.6	_	_
FrozenBiLM [Yang et al., NeurIPS 2022]	\checkmark	_	10M	16.7	33.8	25.9	41.9
ViTiS (Ours)	✓	1 1	2.5M	18.1	36.1	25.5	45.5

Pre-Training: All trainable parameters trained under MLM by keeping vision and language models frozen on WebVid2M [Bain et al., ICCV 2021]

Evaluation: Zero-shot top-1 accuracy on test sets, except TGIF-QA on the validation set

Few-Shot VideoQA Results

Метнор	TRAINED MODULES	#TRAINED PARAMS	MSRVTT-QA	Msvd-QA	ANET-QA	TGIF-QA
FrozenBiLM [Yang et al., NeurIPS 2022]	ATP	30M	36.0	46.5	33.2	55.1
ViTiS (Ours)	ATP	101M	36.5	47.6	33.1	55.7
ViTiS (Ours)	Prompts	0.75M	36.9	47.8	34.2	56.2

Few-Shot Training: Training using 1% of training data [Yang et al., NeurlPS 2022]

- ATP: Fine-tune all trainable parameters (8% of total)
- **Prompts:** Fine-tune only prompts (0.8% of trainable, 0.06% of total)

Evaluation: Few-shot top-1 accuracy on test sets, except TGIF-QA on the validation set

Contributions

Introducing multimodal prompt learning for VideoQA for the first time

- Proposing a visual mapping network for VideoQA, mapping video input to the text embedding space while enabling temporal interaction
- Demonstrating strong performance on multiple VideoQA datasets in zero-shot and few-shot settings

Zero-Shot and Few-Shot Video Question Answering with Multi-Modal Prompts

Deniz Engin

Yannis Avrithis

Project Page

https://engindeniz.github.io/vitis

