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Motivation: Image Recognition Models Today
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Motivation: Explainable AI, What? Why?
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What?

● A way to understand our models?
● A process to uncover the 

structure of data?
● An approach to improve models?

Why?

● Science vs Real Word.
● Accountability & Responsibility.
● Right of an explanation

Lipton, 2016



Motivation: Explainable AI, How?
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Explanations Interpretations

Transparency

Is a model:
● Decomposable?
● Described in few words?
● Simplificable?

Can a model provide?
● Textual explanations?
● Visualizations?
● Explanations by Example?

Post-Hoc 

black box

network
𝑓

input x
outputs y
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Preliminaries: Backpropagation
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Preliminaries: Gradient
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Gradient Guided Gradient
Springenberg et al., 2014

Smooth Gradient
Smilkov et al., 2017



Preliminaries: Class Activation Maps (CAM)
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Preliminaries: The many flavours of CAM
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…

Grad-CAM
Selvaraju et al., 2017

Grad-CAM++
(Chattopadhay et al., 2018)

Score-CAM
(Wang et al., 2020)
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Gradient Denoising: Contributions and Inspiration
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● Network responses to inputs can be observed with gradients.

● Guided gradients used to denoise standard gradient.

● Improval of post-hoc interpretations with a transparency inspired approach.



Gradient Denoising : Main algorithm
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Gradient Denoising : Regularization
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● L1 Loss

● L2 Loss

● Cosine Similarity 

● Histogram Intersection
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Experiments: Set UP
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Training Set UP
● CIFAR-100 
● Models:

○ ResNet-18
○ MobileNet-V2

● 200 epochs
● 128 images per batch
● SGD Optimization
● Initial Lr: 10-1, reduced on epochs 

60, 120 and 160.

Evaluation Set UP
● Saliency map guided:

○ Generation of CAM activations 
○ Evaluation via interpretable 

recognition 
○ Causality Evaluation.

(following 
https://github.com/weiaicunzai/pytorch-cifar100)



Experiments: Image Recognition
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Experiments: Interpretable Image Recognition
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Experiments: Qualitative Results
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Experiments: Ablation Experiments
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Experiments: Gradient Visualization
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Thank you,

Any Questions?

Code will be available soon
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Stay in contact!

https://ftorres11.github.io

felipe.torres@lis-lab.fr

https://ftorres11.github.io
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Measuring Interpretability
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Measuring Interpretability
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Measuring Interpretability
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