A Learning Paradigm for Interpretable Gradients

Felipe Torres Figueroa¹, Hanwei Zhang¹, Ronan Sicre¹, Yannis Avrithis² and Stephane Ayache¹

¹ Centrale Marseille, Aix-Marseille Université, CNRS, LIS, Marseille France ² Institute of Advanced Research on Artificial Intelligence (IARAI)

|ARA|

Table of Contents

- Motivation
- Preliminaries
- Gradient Denoising
- Experiments
- Future Work

Table of Contents

- Motivation
- Preliminaries
- Gradient Denoising
- Experiments
- Future Work

Motivation: Image Recognition Models Today

Motivation: Explainable AI, What? Why?

What?

- A way to understand our models?
- A process to uncover the structure of data?
- An approach to improve models?

Why?

- Science vs Real Word.
- Accountability & Responsibility.
- Right of an explanation

Lipton, 2016

Motivation: Explainable AI, How?

Explanations ———

Interpretations

Transparency

Is a model:

- Decomposable?
- Described in few words?
- Simplificable?

Can a model provide?

- Textual explanations?
- Visualizations?
- Explanations by Example?

Post-Hoc

Table of Contents

- Motivation
- Preliminaries
- Gradient Denoising
- Experiments
- Future Work

Preliminaries: Backpropagation

Preliminaries: Gradient

Gradient

Smooth Gradient Smilkov et al., 2017

Guided Gradient Springenberg et al., 2014

Preliminaries: Class Activation Maps (CAM)

Weighting Coefficient

Preliminaries: The many flavours of CAM

$$S^{c} = \operatorname{ReLU}\left(\sum_{k=1}^{K} \alpha_{k}^{c} A^{k}\right)$$

. . .

Grad-CAM Selvaraju et al., 2017

Grad-CAM++ (Chattopadhay et al., 2018)

Score-CAM (Wang et al., 2020)

11

Table of Contents

- Motivation
- Preliminaries
- Gradient Denoising
- Experiments
- Future Work

Gradient Denoising: Contributions and Inspiration

• Network responses to inputs can be observed with gradients.

• Guided gradients used to denoise standard gradient.

• Improval of post-hoc interpretations with a transparency inspired approach.

Gradient Denoising : Main algorithm

Gradient Denoising : Regularization

• L1 Loss

• L2 Loss

• Cosine Similarity

Histogram Intersection

$$L_{\text{MAE}}(\delta, \delta') = \frac{1}{m} ||\delta - \delta'||_1$$
$$L_{\text{MSE}}(\delta, \delta') = \frac{1}{m} ||\delta - \delta'||_2^2$$
$$L_{\text{COS}}(\delta, \delta') = \frac{\langle \delta, \delta' \rangle}{||\delta||_2 ||\delta'||_2}$$
$$L_{\text{HI}}(\delta, \delta') = -\frac{\sum_{i=0}^m \min(|\delta_i|, |\delta'_i|)}{||\delta||_1 ||\delta'||_1}$$

Table of Contents

- Motivation
- Preliminaries
- Gradient Denoising
- Experiments
- Future Work

Experiments: Set UP

Training Set UP

- CIFAR-100
- Models:
 - ResNet-18
 - MobileNet-V2
- 200 epochs
- 128 images per batch
- SGD Optimization
- Initial Lr: 10⁻¹, reduced on epochs 60, 120 and 160.

(following

https://github.com/weiaicunzai/pytorch-cifar100)

Evaluation Set UP

- Saliency map guided:
 - Generation of CAM activations
 - Evaluation via interpretable recognition
 - Causality Evaluation.

Experiments: Image Recognition

Table 1: Accuracy of standard vs. our training using ResNet-18 and MobileNet-V2 on CIFAR-100. Using co-sine error function for our training.

Model	Error	λ	ACC	
ResNet-18	Baseline Ours	-7.5×10^{-3}	73.42 72.86	
MOBILENET-V2	Baseline Ours	$^{-}$ 1 × 10 ⁻³	59.43 62.36	

Experiments: Interpretable Image Recognition

Table 2: *Interpretability metrics* of standard *vs*. our training using ResNet-18 and MobileNet-V2 on CIFAR-100. Using cosine error function for our training.

RESNET-18				MOBILENET-V2										
Метнор	Error	AD↓	AG↑	AI↑	Ins†	Del↓		Method	Error	AD↓	AG↑	AI↑	Ins↑	Del↓
GRAD-CAM Ba	Baseline	30.16	15.23	29.99	58.47	17.47	GRAD CAM	Baseline	44.64	6.57	25.62	44.64	14.34	
	Ours	28.09	16.19	31.53	58.76	17.57		ORAD-CAM	Ours	40.89	7.31	27.08	45.57	15.20
CRUE CAME	Baseline	31.40	14.17	28.47	7 58.61 17.05	CRAD CAME	Baseline	45.98	6.12	24.10	44.72	14.76		
GRAD-CAM++	Ours	29.78	15.07	29.60	58.90	17.22		GRAD-CAM++	Ours	40.76	6.85	26.46	45.51	14.92
SCORE-CAM	Baseline	26.49	18.62	33.84	58.42	18.31	SCOPE CAM	Baseline	40.55	7.85	28.57	45.62	14.52	
	Ours	24.82	19.49	35.51	59.11	18.34		SCORE-CAM	Ours	36.34	9.09	30.50	46.35	14.72
ABLATION-CAM B	Baseline	31.96	14.02	28.33	58.36	17.14	ABLATION-CAM	Baseline	45.15	6.38	25.32	44.62	15.03	
	Ours	29.90	15.03	29.61	58.70	17.37		Ours	41.13	7.03	26.10	45.38	15.12	
Ахюм-САМ	Baseline	30.16	15.23	29.98	58.47	17.47	17.47 Ахіом-САМ 17.57	Baseline	44.65	6.57	25.62	44.64	15.27	
	Ours	28.09	16.20	31.53	58.76	17.57		Ours	40.89	7.31	27.08	45.57	15.20	

Experiments: Qualitative Results

Experiments: Ablation Experiments

Table 3: Effect of *error function* on our approach, using ResNet-18 and Grad-CAM attributions on CIFAR-100.

ERROR FUNCTION	Acc	AD↓	AG↑	AI↑	Ins†	Del↓
Baseline	73.42	30.16	15.23	29.99	58.47	17.47
Cosine	72.86	28.09	16.19	31.53	58.76	17.57
Histogram	73.88	30.39	14.78	29.38	58.52	17.35
MAE	73.41	30.33	15.06	29.61	58.13	17.95
MSE	73.86	29.64	15.19	30.11	59.05	18.02

Table 4: Effect of *regularization coefficient* λ (9) on our approach, using ResNet-18 and Grad-CAM attributions on CIFAR-100. Using cosine error function for our training.

λ	Acc	AD↓	AG↑	AI↑	Ins†	Del↓
0	73.42	30.16	15.23	29.99	58.47	17.47
1×10^{-3}	73.71	29.52	15.17	30.03	59.23	17.45
2.5×10^{-3}	72.99	30.53	15.82	30.56	59.04	17.96
5×10^{-3}	72.46	30.10	16.06	30.67	57.47	17.80
7.5×10^{-3}	72.86	28.09	16.20	31.53	58.76	17.57
1×10^{-2}	73.28	28.97	15.75	31.16	58.99	17.50
1×10^{-1}	73.00	28.93	16.13	31.55	59.66	17.95
1	73.30	28.44	16.02	31.31	58.64	17.48
10	73.04	29.28	15.23	30.47	58.74	17.47

Experiments: Gradient Visualization

Thank you,

Any Questions?

Code will be available soon

Stay in contact!

https://ftorres11.github.io

felipe.torres@lis-lab.fr

References

- Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V. N. (2018). Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In WACV.
- He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In CVPR.
- Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3):31–57.
- Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). MobileNetv2: Inverted residuals and linear bottlenecks. In CVPR.
- Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In ICCV.
- Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. (2017). Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825.
- Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep features for discriminative localization. In CVPR.

Measuring Interpretability

c: 587 | hammer

$$AD = \frac{1}{N} \sum_{n=1}^{N} \frac{\max(0, Y_i^c - O_i^c)}{Y_i^c}$$
$$IC = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(O_i^c > Y_i^c)$$

Chattopadhyay et al., 2017

$$AG = \frac{1}{N} \sum_{n=1}^{N} \frac{\max(0, O_i^c - Y_i^c)}{Y_i^c}$$

Measuring Interpretability

Algorithm 1: Insertion Algorithm

Input: black-box f, image x, saliency map s^c , number of pixels N removed per step. **Output:** insertion score *ins*. $n \leftarrow 0$ $x' \leftarrow Blur(x)$ $p_n^c \leftarrow f(x)$ **while** $x \neq x'$ **do** According to s, set the next n pixels in x' to corresponding pixels in x $n \leftarrow n+1$ $p_n^c \leftarrow f(x')$ *ins* \leftarrow AreaUnderCurve(p_n^c vs.i/n, $\forall i = 0, ...n$) **return** *ins*

Measuring Interpretability

Algorithm 2: Deletion Algorithm

```
Input: black-box f, image x, saliency map s<sup>c</sup>, number of pixels N removed per step. Output: deletion score del.
```

```
n \leftarrow 0

p_n^c \leftarrow f(x)

while x has non-zero pixels do

According to s, set the next n pixels in x to 0

n \leftarrow n+1

p_n^c \leftarrow f(x)

del \leftarrow \text{AreaUnderCurve}(p_n^c \text{vs.} i/n, \forall i = 0, ... n)

return del
```