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Why Self-Supervised Learning is cool!

Scale to billions of images Avoids problems with labelling Improved performance on 
downstream tasks



Do we need billions of images for pretraining?

[de Haan et al., 2001, Adams 1987, Campos et al.,1978, Sokol, 1978]

• Face recognition and color sensitivity  
developed in three months.

• Depth perception takes five months.

• Visual acuity takes six months.



Do we need billions of images for pretraining?

• Face recognition and color sensitivity  
developed in three months.

• Depth perception takes five months.

• Visual acuity takes six months.

• Humans observe surroundings in one 
continuous stream, interrupted by sleep.

[de Haan et al., 2001, Adams 1987, Campos et al.,1978, Sokol, 1978]



Videos open exciting new direction

Embodied AIVisual development Understanding physics

Platforms with insane scale 



Image vs. Video based SSL

Hand-crafted 
data augmentations

crop, flip, blur, solarization, 
random mask etc.



Image vs. Video based SSL

Natural 
data augmentations

low-illumination

Object occlusion Perspective distortion

Hand-crafted 
data augmentations

crop, flip, blur, solarization, 
random mask etc.



Learning Image Encoders From Video

• A new dataset of open-source first-person video for the purpose of virtual “walking tours”.



Learning Image Encoders From Video

• A new dataset of open-source first-person video for the purpose of virtual “walking tours”.

• A new SSL framework, to discover and track objects over time in an end-to-end manner, using 
transformer cross-attention.



Walking Tour Dataset

10 x 4K videos from different cities, Avg duration – 1hr 38min, ~700 classes, License - CC-BY



Walking Tour Dataset

• Some interesting properties in Walking Tour videos

1. Natural transition in lighting conditions.
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Walking Tour Dataset

• Some interesting properties in Walking Tour videos

1. Natural transition in lighting conditions.

2. Large number of objects and actions.

3. Natural transition in scenes.



DoRA: Discover and tRAck
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DoRA: Multi-Object Tracker

• Discover objects using three random 
heads from A["#$]
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• Discover objects using three random 
heads from A["#$]

• Obtain features corresponding to 
these objects i.e., object prototypes.
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DoRA: Multi-Object Tracker

• Discover objects using three random 
heads from A["#$]

• Obtain features corresponding to 
these objects i.e., object prototypes.

• Improve object-patch correspondence 
using Sinkhorn-Knopp.
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DoRA: Multi-Object Tracker

object 
prototypes • Discover objects using three random 

heads from A["#$]

• Obtain features corresponding to 
these objects i.e., object prototypes.

• Improve object-patch correspondence 
using Sinkhorn-Knopp.

• Obtain multi-object masks using 
cross-attention.
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DoRA: Visualizing Tracking



DoRA: Visualizing Tracking



Is ImageNet worth one video?



1 Video Better Than ImageNet Pretraining
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Scaling To Multiple Videos
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Pretraining On Different Videos
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Thank you
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