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Oriane Siméoni Giorgos Tolias Christos Varytimidis Hanwei Zhang



3/104

instance-level tasks

• scale

• viewpoint

• occlusion

• background clutter

• lighting

• discriminative power

• distractors



3/104

instance-level tasks

• scale

• viewpoint

• occlusion

• background clutter

• lighting

• discriminative power

• distractors



3/104

instance-level tasks

• scale

• viewpoint

• occlusion

• background clutter

• lighting

• discriminative power

• distractors



4/104

category-level tasks

• scale

• viewpoint

• occlusion

• background clutter

• lighting

• number of instances

• texture/color

• pose

• deformability

• intra-class variability



4/104

category-level tasks

• scale

• viewpoint

• occlusion

• background clutter

• lighting

• number of instances

• texture/color

• pose

• deformability

• intra-class variability



4/104

category-level tasks

• scale

• viewpoint

• occlusion

• background clutter

• lighting

• number of instances

• texture/color

• pose

• deformability

• intra-class variability



5/104

part I: exploring

• instance-level visual matching, search and clustering

• shallow visual representations and matching processes

• local features, hand-crafted descriptors and visual vocabularies

visual vocabularies spatial matching

beyond vocabularies

community photos



5/104

part I: exploring

• instance-level visual matching, search and clustering

• shallow visual representations and matching processes

• local features, hand-crafted descriptors and visual vocabularies

visual vocabularies spatial matching

beyond vocabularies

community photos



5/104

part I: exploring

• instance-level visual matching, search and clustering

• shallow visual representations and matching processes

• local features, hand-crafted descriptors and visual vocabularies

visual vocabularies spatial matching

beyond vocabularies

community photos



5/104

part I: exploring

• instance-level visual matching, search and clustering

• shallow visual representations and matching processes

• local features, hand-crafted descriptors and visual vocabularies

visual vocabularies spatial matching

beyond vocabularies community photos



6/104

part II: exploring deeper

• instance-level visual matching, search and object discovery

• deep visual representations and matching processes

• parametric models learned from visual data

• focus on the manifold structure of the feature space

manifold search

spatial matching

object discovery



6/104

part II: exploring deeper

• instance-level visual matching, search and object discovery

• deep visual representations and matching processes

• parametric models learned from visual data

• focus on the manifold structure of the feature space

manifold search

spatial matching

object discovery



6/104

part II: exploring deeper

• instance-level visual matching, search and object discovery

• deep visual representations and matching processes

• parametric models learned from visual data

• focus on the manifold structure of the feature space

manifold search

spatial matching

object discovery



6/104

part II: exploring deeper

• instance-level visual matching, search and object discovery

• deep visual representations and matching processes

• parametric models learned from visual data

• focus on the manifold structure of the feature space

manifold search

spatial matching object discovery



7/104

part III: learning

• learning deep visual representations by exploring visual data

• focus limited or no supervision

• progress from instance-level to category-level tasks

m

m

m

unsupervised metric learning semi-supervised learning

few-shot learning



7/104

part III: learning

• learning deep visual representations by exploring visual data

• focus limited or no supervision

• progress from instance-level to category-level tasks

m

m

m

unsupervised metric learning semi-supervised learning

few-shot learning



7/104

part III: learning

• learning deep visual representations by exploring visual data

• focus limited or no supervision

• progress from instance-level to category-level tasks

m

m

m

unsupervised metric learning semi-supervised learning

few-shot learning



8/104

part IV: beyond

reflection

• current work

• take home message

outlook

• a vision

• research directions



9/104

part I

exploring



10/104

outline – part I

2 context

3 visual vocabularies

4 spatial matching

5 beyond vocabularies

6 exploring photo collections



11/104

scale-invariant feature transform (SIFT)

Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affine transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.

The least-squares solution for the parameters x can be determined by solving the correspond-
ing normal equations,

x = [ATA]−1ATb,

which minimizes the sum of the squares of the distances from the projected model locations
to the corresponding image locations. This least-squares approach could readily be extended
to solving for 3D pose and internal parameters of articulated and flexible objects (Lowe,
1991).

Outliers can now be removed by checking for agreement between each image feature and
the model. Given the more accurate least-squares solution, we now require each match to
agree within half the error range that was used for the parameters in the Hough transform
bins. If fewer than 3 points remain after discarding outliers, then the match is rejected.
As outliers are discarded, the least-squares solution is re-solved with the remaining points,
and the process iterated. In addition, a top-down matching phase is used to add any further
matches that agree with the projected model position. These may have been missed from the
Hough transform bin due to the similarity transform approximation or other errors.

The final decision to accept or reject a model hypothesis is based on a detailed probabilis-
tic model given in a previous paper (Lowe, 2001). This method first computes the expected
number of false matches to the model pose, given the projected size of the model, the number
of features within the region, and the accuracy of the fit. A Bayesian analysis then gives the
probability that the object is present based on the actual number of matching features found.
We accept a model if the final probability for a correct interpretation is greater than 0.98.
For objects that project to small regions of an image, 3 features may be sufficient for reli-
able recognition. For large objects covering most of a heavily textured image, the expected
number of false matches is higher, and as many as 10 feature matches may be necessary.

8 Recognition examples

Figure 12 shows an example of object recognition for a cluttered and occluded image con-
taining 3D objects. The training images of a toy train and a frog are shown on the left.
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visual recognition works under occlusion, lighting and viewpoint changes

 Scale

 (first

 octave)

Scale

(next

octave)

Gaussian

Difference of

Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between D and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) − G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant

6

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

local feature descriptor as histogram localization by
detection by DoG of gradient orientation Hough transform

Lowe. ICCV 1999. Object recognition from local scale-invariant features.
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Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affine transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.

The least-squares solution for the parameters x can be determined by solving the correspond-
ing normal equations,

x = [ATA]−1ATb,

which minimizes the sum of the squares of the distances from the projected model locations
to the corresponding image locations. This least-squares approach could readily be extended
to solving for 3D pose and internal parameters of articulated and flexible objects (Lowe,
1991).

Outliers can now be removed by checking for agreement between each image feature and
the model. Given the more accurate least-squares solution, we now require each match to
agree within half the error range that was used for the parameters in the Hough transform
bins. If fewer than 3 points remain after discarding outliers, then the match is rejected.
As outliers are discarded, the least-squares solution is re-solved with the remaining points,
and the process iterated. In addition, a top-down matching phase is used to add any further
matches that agree with the projected model position. These may have been missed from the
Hough transform bin due to the similarity transform approximation or other errors.

The final decision to accept or reject a model hypothesis is based on a detailed probabilis-
tic model given in a previous paper (Lowe, 2001). This method first computes the expected
number of false matches to the model pose, given the projected size of the model, the number
of features within the region, and the accuracy of the fit. A Bayesian analysis then gives the
probability that the object is present based on the actual number of matching features found.
We accept a model if the final probability for a correct interpretation is greater than 0.98.
For objects that project to small regions of an image, 3 features may be sufficient for reli-
able recognition. For large objects covering most of a heavily textured image, the expected
number of false matches is higher, and as many as 10 feature matches may be necessary.

8 Recognition examples

Figure 12 shows an example of object recognition for a cluttered and occluded image con-
taining 3D objects. The training images of a toy train and a frog are shown on the left.
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between D and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G
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From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:
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and therefore,
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This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15
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Lindeberg. IJCV 1998. Feature Detection with Automatic Scale Selection.
Lowe. ICCV 1999. Object recognition from local scale-invariant features.
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Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affine transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.

The least-squares solution for the parameters x can be determined by solving the correspond-
ing normal equations,

x = [ATA]−1ATb,

which minimizes the sum of the squares of the distances from the projected model locations
to the corresponding image locations. This least-squares approach could readily be extended
to solving for 3D pose and internal parameters of articulated and flexible objects (Lowe,
1991).

Outliers can now be removed by checking for agreement between each image feature and
the model. Given the more accurate least-squares solution, we now require each match to
agree within half the error range that was used for the parameters in the Hough transform
bins. If fewer than 3 points remain after discarding outliers, then the match is rejected.
As outliers are discarded, the least-squares solution is re-solved with the remaining points,
and the process iterated. In addition, a top-down matching phase is used to add any further
matches that agree with the projected model position. These may have been missed from the
Hough transform bin due to the similarity transform approximation or other errors.

The final decision to accept or reject a model hypothesis is based on a detailed probabilis-
tic model given in a previous paper (Lowe, 2001). This method first computes the expected
number of false matches to the model pose, given the projected size of the model, the number
of features within the region, and the accuracy of the fit. A Bayesian analysis then gives the
probability that the object is present based on the actual number of matching features found.
We accept a model if the final probability for a correct interpretation is greater than 0.98.
For objects that project to small regions of an image, 3 features may be sufficient for reli-
able recognition. For large objects covering most of a heavily textured image, the expected
number of false matches is higher, and as many as 10 feature matches may be necessary.

8 Recognition examples

Figure 12 shows an example of object recognition for a cluttered and occluded image con-
taining 3D objects. The training images of a toy train and a frog are shown on the left.
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between D and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) − G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

local feature descriptor as histogram localization by
detection by DoG of gradient orientation Hough transform

Daugman. VR 1980. Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles.
Lowe. ICCV 1999. Object recognition from local scale-invariant features.
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Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affine transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.

The least-squares solution for the parameters x can be determined by solving the correspond-
ing normal equations,

x = [ATA]−1ATb,

which minimizes the sum of the squares of the distances from the projected model locations
to the corresponding image locations. This least-squares approach could readily be extended
to solving for 3D pose and internal parameters of articulated and flexible objects (Lowe,
1991).

Outliers can now be removed by checking for agreement between each image feature and
the model. Given the more accurate least-squares solution, we now require each match to
agree within half the error range that was used for the parameters in the Hough transform
bins. If fewer than 3 points remain after discarding outliers, then the match is rejected.
As outliers are discarded, the least-squares solution is re-solved with the remaining points,
and the process iterated. In addition, a top-down matching phase is used to add any further
matches that agree with the projected model position. These may have been missed from the
Hough transform bin due to the similarity transform approximation or other errors.

The final decision to accept or reject a model hypothesis is based on a detailed probabilis-
tic model given in a previous paper (Lowe, 2001). This method first computes the expected
number of false matches to the model pose, given the projected size of the model, the number
of features within the region, and the accuracy of the fit. A Bayesian analysis then gives the
probability that the object is present based on the actual number of matching features found.
We accept a model if the final probability for a correct interpretation is greater than 0.98.
For objects that project to small regions of an image, 3 features may be sufficient for reli-
able recognition. For large objects covering most of a heavily textured image, the expected
number of false matches is higher, and as many as 10 feature matches may be necessary.

8 Recognition examples

Figure 12 shows an example of object recognition for a cluttered and occluded image con-
taining 3D objects. The training images of a toy train and a frog are shown on the left.
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Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between D and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G
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≈ G(x, y, kσ) − G(x, y, σ)
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and therefore,

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant
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Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

local feature descriptor as histogram localization by
detection by DoG of gradient orientation Hough transform

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.
Lowe. ICCV 1999. Object recognition from local scale-invariant features.
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independent measurement of a common scene region (the
pre-image of the detected region), and the estimate of the
descriptor for this scene region is computed by averaging
the descriptors throughout the track. This gives a measur-
able improvement in the signal to noise of the descriptors
(which again has been demonstrated using the ground truth
tests of section 5.1).

3. Building a visual vocabulary
The objective here is to vector quantize the descriptors into
clusters which will be the visual ‘words’ for text retrieval.
Then when a new frame of the movie is observed each de-
scriptor of the frame is assigned to the nearest cluster, and
this immediately generates matches for all frames through-
out the movie. The vocabulary is constructed from a sub-
part of the movie, and its matching accuracy and expressive
power are evaluated on the remainder of the movie, as de-
scribed in the following sections.
The vector quantization is carried out here by K-means

clustering, though other methods (K-medoids, histogram
binning, etc) are certainly possible.

3.1. Implementation
Regions are tracked through contiguous frames, and a mean
vector descriptor x̄i computed for each of the i regions. To
reject unstable regions the 10% of tracks with the largest
diagonal covariance matrix are rejected. This generates an
average of about 1000 regions per frame.
Each descriptor is a 128-vector, and to simultaneously

cluster all the descriptors of the movie would be a gargan-
tuan task. Instead a subset of 48 shots is selected (these
shots are discussed in more detail in section 5.1) cover-
ing about 10k frames which represent about 10% of all the
frames in the movie. Even with this reduction there are still
200K averaged track descriptors that must be clustered.
To determine the distance function for clustering the Ma-

halanobis distance is computed as follows: it is assumed
that the covariance Σ is the same for all tracks, and this
is computed by estimating from all the available data, i.e.
all descriptors for all tracks in the 48 shots. The Maha-
lanobis distance enables the more noisy components of the
128–vector to be weighted down, and also decorrelates the
components. Empirically there is a small degree of correla-
tion. The distance function between two descriptors (repre-
sented by their mean track descriptors) x̄1, x̄2, is then given
by d

�
x̄1 � x̄2 � � � �

x̄1 � x̄2 � � � � 1 �
x̄1 � x̄2 � . As is standard,

the descriptor space is affine transformed by the square root
of Σ so that Euclidean distance may be used.
About 6k clusters are used for Shape Adapted regions,

and about 10k clusters for Maximally Stable regions. The
ratio of the number of clusters for each type is chosen to be
approximately the same as the ratio of detected descriptors

(a)

(b)

Figure 2: Samples from the clusters corresponding to a single vi-
sual word. (a) Two examples of clusters of Shape Adapted regions.
(b) Two examples of clusters of Maximally Stable regions.

of each type. The number of clusters is chosen empirically
to maximize retrieval results on the ground truth set of sec-
tion 5.1. The K-means algorithm is run several times with
random initial assignments of points as cluster centres, and
the best result used.
Figure 2 shows examples of regions belonging to par-

ticular clusters, i.e. which will be treated as the same vi-
sual word. The clustered regions reflect the properties of
the SIFT descriptors which penalize variations amongst re-
gions less than cross-correlation. This is because SIFT em-
phasizes orientation of gradients, rather than the position of
a particular intensity within the region.
The reason that SA and MS regions are clustered sepa-

rately is that they cover different and largely independent
regions of the scene. Consequently, they may be thought
of as different vocabularies for describing the same scene,
and thus should have their own word sets, in the same way
as one vocabulary might describe architectural features and
another the state of repair of a building.

4. Visual indexing using text retrieval
methods

In text retrieval each document is represented by a vector of
word frequencies. However, it is usual to apply a weighting
to the components of this vector [1], rather than use the fre-
quency vector directly for indexing. Here we describe the
standard weighting that is employed, and then the visual
analogy of document retrieval to frame retrieval.

3
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instance-level

• clusters of SIFT descriptors

• images described by visual
word histograms

• text retrieval, e.g. TF-IDF,
inverted files

category-level

• näıve Bayes or SVM classifier

• features soon to be replaced
by dense
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independent measurement of a common scene region (the
pre-image of the detected region), and the estimate of the
descriptor for this scene region is computed by averaging
the descriptors throughout the track. This gives a measur-
able improvement in the signal to noise of the descriptors
(which again has been demonstrated using the ground truth
tests of section 5.1).

3. Building a visual vocabulary
The objective here is to vector quantize the descriptors into
clusters which will be the visual ‘words’ for text retrieval.
Then when a new frame of the movie is observed each de-
scriptor of the frame is assigned to the nearest cluster, and
this immediately generates matches for all frames through-
out the movie. The vocabulary is constructed from a sub-
part of the movie, and its matching accuracy and expressive
power are evaluated on the remainder of the movie, as de-
scribed in the following sections.
The vector quantization is carried out here by K-means

clustering, though other methods (K-medoids, histogram
binning, etc) are certainly possible.

3.1. Implementation
Regions are tracked through contiguous frames, and a mean
vector descriptor x̄i computed for each of the i regions. To
reject unstable regions the 10% of tracks with the largest
diagonal covariance matrix are rejected. This generates an
average of about 1000 regions per frame.
Each descriptor is a 128-vector, and to simultaneously

cluster all the descriptors of the movie would be a gargan-
tuan task. Instead a subset of 48 shots is selected (these
shots are discussed in more detail in section 5.1) cover-
ing about 10k frames which represent about 10% of all the
frames in the movie. Even with this reduction there are still
200K averaged track descriptors that must be clustered.
To determine the distance function for clustering the Ma-

halanobis distance is computed as follows: it is assumed
that the covariance Σ is the same for all tracks, and this
is computed by estimating from all the available data, i.e.
all descriptors for all tracks in the 48 shots. The Maha-
lanobis distance enables the more noisy components of the
128–vector to be weighted down, and also decorrelates the
components. Empirically there is a small degree of correla-
tion. The distance function between two descriptors (repre-
sented by their mean track descriptors) x̄1, x̄2, is then given
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x̄1 � x̄2 � . As is standard,

the descriptor space is affine transformed by the square root
of Σ so that Euclidean distance may be used.
About 6k clusters are used for Shape Adapted regions,

and about 10k clusters for Maximally Stable regions. The
ratio of the number of clusters for each type is chosen to be
approximately the same as the ratio of detected descriptors
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Figure 2: Samples from the clusters corresponding to a single vi-
sual word. (a) Two examples of clusters of Shape Adapted regions.
(b) Two examples of clusters of Maximally Stable regions.

of each type. The number of clusters is chosen empirically
to maximize retrieval results on the ground truth set of sec-
tion 5.1. The K-means algorithm is run several times with
random initial assignments of points as cluster centres, and
the best result used.
Figure 2 shows examples of regions belonging to par-

ticular clusters, i.e. which will be treated as the same vi-
sual word. The clustered regions reflect the properties of
the SIFT descriptors which penalize variations amongst re-
gions less than cross-correlation. This is because SIFT em-
phasizes orientation of gradients, rather than the position of
a particular intensity within the region.
The reason that SA and MS regions are clustered sepa-

rately is that they cover different and largely independent
regions of the scene. Consequently, they may be thought
of as different vocabularies for describing the same scene,
and thus should have their own word sets, in the same way
as one vocabulary might describe architectural features and
another the state of repair of a building.

4. Visual indexing using text retrieval
methods

In text retrieval each document is represented by a vector of
word frequencies. However, it is usual to apply a weighting
to the components of this vector [1], rather than use the fre-
quency vector directly for indexing. Here we describe the
standard weighting that is employed, and then the visual
analogy of document retrieval to frame retrieval.
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challenges

• thousands of local features per image

• vocabularies may need to be very large

• bag-of-words invariant but not discriminative

• spatial matching does not scale well

• quantization hurts

• burstiness of visual elements hurts

• need for efficient nearest neighbor search

• datasets are redundant
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outline – part I

2 context

3 visual vocabularies

4 spatial matching

5 beyond vocabularies

6 exploring photo collections
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Fig. 9. Classification performance results of various types of codeword ambiguity for the Scene-15 dataset, trained on 5 images per class. This figures
illustrates the effect of relatively large vocabulary sizes compared to the total number of image features.

a stable, optimal kernel size. In contrast, the best kernel sizes for
codeword plausibility fluctuate heavily over the 10 repetitions.
Analyzing the scores, we found that increasing the kernel size of
codeword plausibility beyond a sufficiently large value does not
change the classification scores much. I.e., for large kernel sizes
there are no implausible features left in the finite feature space.
Therefore, sufficiently large kernels lead to similar classification
performance without a clear optimum, resulting in high kernel
size variance for codeword plausibility. In analyzing the kernel
size over the number of vocabulary elements shows that a
larger vocabulary leads to slightly smaller kernels. This may be
expected, since a larger vocabulary is formed by a smaller radius
between codewords. When considering the dimensionality of the
descriptor, it shows that lower dimensional features use a smaller
kernel. This is the case because low-dimensional features typically
have a smaller Euclidean distance than high-dimensional features.
In summary, the kernel size depends on the type of ambiguity,
feature dimensionality and the number of codewords. Therefore,
the optimal kernel size cannot be easily inferred from the data and
should be found in a discriminative manner, linking it directly to
classification performance as achieved with cross-validation.

As illustrated in figure 6, increasing the vocabulary size in-
creases the classification performance and the performance of the
four ambiguity types seems to converge. In figure 6, however,
the vocabulary sizes are relatively small. The largest vocabulary
in figure 6 has 3200 elements and comprises only 0.23% of all
features. The behavior of relatively small vocabularies may not
be identical to relatively large vocabularies. With vocabulary sizes
that are relatively large compared to the total number of training
image features, ambiguity type performance may diverge again.
To evaluate this, we compared ambiguity type performance on
the Scene-15 dataset over relatively large vocabularies.

To make the computation of relatively large vocabularies
practically feasible, we reduced the total number of features in
the training set. The number of features may be reduced by
only extracting features on detected interest points in an image.
However, interest point detection would deviate too much from
our uniform experimental setup for the Scene-15 dataset. Hence,
we keep extracting image features on a regular grid yet constrain
the total number of image features by reducing the number of
images per class as is also done by [4], [8], [40]. For this

experiment, we randomly select 5 images for each of the 15
classes, using the remaining images for the test set. The average
number of training feature over the 10 random repetitions amounts
to a total of 67, 408±348 unique SIFT descriptors. Our experiment
is not as much concerned with the total number of features per
se, but with the ratio between the number of features and the size
of the vocabulary. We want to measure the effect of relatively
large vocabularies. We evaluated vocabulary sizes ranging from
12 (0.02%) to 25,600 (38%) unique visual words. The underlying
assumption is that the results in this experiment trend will hold
for various feature and vocabulary sizes, however with similar
ratios.

The results for relatively large vocabularies are given in fig-
ure 9. Note that the performance for relatively small vocabularies
show a similar trend as in figure 6. Hence, the results in figure 6
and figure 9 are in agreement. The main difference is the lower
performance in figure 9 because only 5 images per class are
used for training. In figure 9 it can be seen that for vocabulary
sizes larger than 800 visual words (1.2%), the performance of
all methods decreases. We attribute this performance decrease to
the curse of dimensionality, albeit that we use a discriminative
SVM classifier. In analyzing ambiguity types, it can be seen that
for vocabulary sizes of 6,400 and higher, the performance of hard
assignment and visual word plausibility severely deteriorates. This
may be expected, since both of these ambiguity types can not
select multiple suitable visual words. For example, in the extreme
case of a vocabulary size equal to the number of image features,
codeword plausibility and hard assignment map each training
image feature to it’s own unique visual word, reverting to exact
feature matching. In contrast, the kernel codebook and codeword
uncertainty methods both allow selecting multiple relevant visual
words. When increasing the vocabulary size, the performance
of these two types remains relatively stable, where codeword
uncertainty is the better performer. As shown by this experiment,
a larger vocabulary does not necessarily yield better results. Actu-
ally, a too large vocabulary severely deteriorates performance for
codeword plausibility and hard-assignment. A kernel codebook
and codeword uncertainty, however, only decrease slightly. Hence,
for relatively large vocabularies visual word ambiguity modeling
makes a significant difference.

To show the modularity of our approach and improve results

classification

• thousands

Vocab Bag of
Size words Spatial
50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633
500K 0.606 0.642
750K 0.609 0.630
1M 0.618 0.645
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Table 5. Examining the effect of vocabulary size on performance
for the 5K dataset. Each vocabulary is trained using AKM on
all 16.7M descriptors. There is a performance peak at 1 mil-
lion words. The spatial verification consistently improves perfor-
mance.

Scaling up with AKM. We explore a number of different
vocabulary sizes for the 5K dataset in table 5. This shows a
peak in performance at 1M visual words, although for large
numbers of clusters, the performance curve appears quite
flat and we predict the performance would not significantly
degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,
5K+100K and 5K+100K+1M datasets in table 4, rows (e)–
(g), using the 1M words visual vocabulary. In going from
the smallest dataset to the largest, a 226-fold increase in the
number of images, the performance falls by just over 20%.
We attribute this drop in performance to a lack of sufficient
discrimination in the quantization for the larger dataset. As
will be seen, this performance loss is ameliorated to some
extent once spatial ranking is included.

4. Spatial re-ranking
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. We have until now consid-
ered the features in each image as a visual bag-of-words
and have ignored the spatial configurations of features. We
now investigate re-ranking the top-ranked results using spa-
tial constraints. The spatial verification procedure estimates
a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
visual words.

4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
that hypothesis.

Transformation dof Matrix
translation +
isotropic scale 3

»

a 0 tx
0 a ty

–

translation +
anisotropic scale 4

»

a 0 tx
0 b ty

–

translation +
vertical shear

5
»

a 0 tx
b c ty

–

(a)

H1

I

H2

H

C1 C2

(b)
Table 6. (a) The three affine sub-groups compared in the spatial
re-ranking. (b) Computing H as H−1

2 H1, preserving “upness” for
the 5 dof case.

Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

instance-level retrieval

• millions

Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
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Fig. 9. Classification performance results of various types of codeword ambiguity for the Scene-15 dataset, trained on 5 images per class. This figures
illustrates the effect of relatively large vocabulary sizes compared to the total number of image features.

a stable, optimal kernel size. In contrast, the best kernel sizes for
codeword plausibility fluctuate heavily over the 10 repetitions.
Analyzing the scores, we found that increasing the kernel size of
codeword plausibility beyond a sufficiently large value does not
change the classification scores much. I.e., for large kernel sizes
there are no implausible features left in the finite feature space.
Therefore, sufficiently large kernels lead to similar classification
performance without a clear optimum, resulting in high kernel
size variance for codeword plausibility. In analyzing the kernel
size over the number of vocabulary elements shows that a
larger vocabulary leads to slightly smaller kernels. This may be
expected, since a larger vocabulary is formed by a smaller radius
between codewords. When considering the dimensionality of the
descriptor, it shows that lower dimensional features use a smaller
kernel. This is the case because low-dimensional features typically
have a smaller Euclidean distance than high-dimensional features.
In summary, the kernel size depends on the type of ambiguity,
feature dimensionality and the number of codewords. Therefore,
the optimal kernel size cannot be easily inferred from the data and
should be found in a discriminative manner, linking it directly to
classification performance as achieved with cross-validation.

As illustrated in figure 6, increasing the vocabulary size in-
creases the classification performance and the performance of the
four ambiguity types seems to converge. In figure 6, however,
the vocabulary sizes are relatively small. The largest vocabulary
in figure 6 has 3200 elements and comprises only 0.23% of all
features. The behavior of relatively small vocabularies may not
be identical to relatively large vocabularies. With vocabulary sizes
that are relatively large compared to the total number of training
image features, ambiguity type performance may diverge again.
To evaluate this, we compared ambiguity type performance on
the Scene-15 dataset over relatively large vocabularies.

To make the computation of relatively large vocabularies
practically feasible, we reduced the total number of features in
the training set. The number of features may be reduced by
only extracting features on detected interest points in an image.
However, interest point detection would deviate too much from
our uniform experimental setup for the Scene-15 dataset. Hence,
we keep extracting image features on a regular grid yet constrain
the total number of image features by reducing the number of
images per class as is also done by [4], [8], [40]. For this

experiment, we randomly select 5 images for each of the 15
classes, using the remaining images for the test set. The average
number of training feature over the 10 random repetitions amounts
to a total of 67, 408±348 unique SIFT descriptors. Our experiment
is not as much concerned with the total number of features per
se, but with the ratio between the number of features and the size
of the vocabulary. We want to measure the effect of relatively
large vocabularies. We evaluated vocabulary sizes ranging from
12 (0.02%) to 25,600 (38%) unique visual words. The underlying
assumption is that the results in this experiment trend will hold
for various feature and vocabulary sizes, however with similar
ratios.

The results for relatively large vocabularies are given in fig-
ure 9. Note that the performance for relatively small vocabularies
show a similar trend as in figure 6. Hence, the results in figure 6
and figure 9 are in agreement. The main difference is the lower
performance in figure 9 because only 5 images per class are
used for training. In figure 9 it can be seen that for vocabulary
sizes larger than 800 visual words (1.2%), the performance of
all methods decreases. We attribute this performance decrease to
the curse of dimensionality, albeit that we use a discriminative
SVM classifier. In analyzing ambiguity types, it can be seen that
for vocabulary sizes of 6,400 and higher, the performance of hard
assignment and visual word plausibility severely deteriorates. This
may be expected, since both of these ambiguity types can not
select multiple suitable visual words. For example, in the extreme
case of a vocabulary size equal to the number of image features,
codeword plausibility and hard assignment map each training
image feature to it’s own unique visual word, reverting to exact
feature matching. In contrast, the kernel codebook and codeword
uncertainty methods both allow selecting multiple relevant visual
words. When increasing the vocabulary size, the performance
of these two types remains relatively stable, where codeword
uncertainty is the better performer. As shown by this experiment,
a larger vocabulary does not necessarily yield better results. Actu-
ally, a too large vocabulary severely deteriorates performance for
codeword plausibility and hard-assignment. A kernel codebook
and codeword uncertainty, however, only decrease slightly. Hence,
for relatively large vocabularies visual word ambiguity modeling
makes a significant difference.

To show the modularity of our approach and improve results
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Table 5. Examining the effect of vocabulary size on performance
for the 5K dataset. Each vocabulary is trained using AKM on
all 16.7M descriptors. There is a performance peak at 1 mil-
lion words. The spatial verification consistently improves perfor-
mance.

Scaling up with AKM. We explore a number of different
vocabulary sizes for the 5K dataset in table 5. This shows a
peak in performance at 1M visual words, although for large
numbers of clusters, the performance curve appears quite
flat and we predict the performance would not significantly
degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,
5K+100K and 5K+100K+1M datasets in table 4, rows (e)–
(g), using the 1M words visual vocabulary. In going from
the smallest dataset to the largest, a 226-fold increase in the
number of images, the performance falls by just over 20%.
We attribute this drop in performance to a lack of sufficient
discrimination in the quantization for the larger dataset. As
will be seen, this performance loss is ameliorated to some
extent once spatial ranking is included.

4. Spatial re-ranking
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. We have until now consid-
ered the features in each image as a visual bag-of-words
and have ignored the spatial configurations of features. We
now investigate re-ranking the top-ranked results using spa-
tial constraints. The spatial verification procedure estimates
a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
visual words.

4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
that hypothesis.
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Table 6. (a) The three affine sub-groups compared in the spatial
re-ranking. (b) Computing H as H−1

2 H1, preserving “upness” for
the 5 dof case.

Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

instance-level retrieval

• millions

Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
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problems

• with k = 106 visual words and n = 107 descriptors, vocabulary
learning is very expensive: only variants of k-means

• for each value of k tested, one needs to not only learn the vocabulary,
but also re-index a very large image collection

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.
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beyond k-means

approximate k-means (AKM)

• centroids updated as in k-means

• points assigned to centroids by randomized k-d trees

approximate Gaussian mixtures (AGM)

• keep nearest neighbors between iterations and use them to model a
Gaussian mixture

• dynamically estimate k by purging overlapping components

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.
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approximate Gaussian mixtures

iteration 0: 50 clusters

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.
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approximate Gaussian mixtures

iteration 1: 15 clusters

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.
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approximate Gaussian mixtures

iteration 2: 10 clusters

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.
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approximate Gaussian mixtures

iteration 3: 8 clusters

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.
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results
image search: mAP on Oxford5k

Method RAKM AKM AGM
k 350k 500k 550k 600k 700k 550k 857k

5k 0.471 0.479 0.486 0.485 0.476 0.485 0.492
5k + 20k 0.439 0.440 0.448 0.441 0.437 0.447 0.459
5k + 1M – – 0.250 – – – 0.280

• RAKM roughly equivalent to AKM, only faster

• AGM superior, with k = 857k automatically inferred in a single run

Li, Yang, Hua and Zhang. ACM-MM 2010. Large-Scale Robust Visual Codebook Construction.
Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.
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outline – part I

2 context

3 visual vocabularies

4 spatial matching

5 beyond vocabularies

6 exploring photo collections
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robust matching

Hough transform

• detect patterns by a voting
process in parameter space

random sample consensus
(RANSAC)

• iteratively generate hypotheses
at random, fit model, and verify
hypotheses by counting inliers

Hough. US Patent 1962. Method and Means for Recognizing Complex Patterns.
Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.
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using local shape

a single correspondence of SIFT features yields a 4-dof transformation

Lowe

• hypotheses: sparse Hough voting in
4-dimensional space

• verification: find inliers for bins with
at least 3 votes

Vocab Bag of
Size words Spatial
50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633
500K 0.606 0.642
750K 0.609 0.630
1M 0.618 0.645

1.25M 0.602 0.625
0 2 4 6 8 10 12

x 10
5

0.45

0.5

0.55

0.6

0.65

Vocabulary Size

m
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P

Bag of words
Spatial

Table 5. Examining the effect of vocabulary size on performance
for the 5K dataset. Each vocabulary is trained using AKM on
all 16.7M descriptors. There is a performance peak at 1 mil-
lion words. The spatial verification consistently improves perfor-
mance.

Scaling up with AKM. We explore a number of different
vocabulary sizes for the 5K dataset in table 5. This shows a
peak in performance at 1M visual words, although for large
numbers of clusters, the performance curve appears quite
flat and we predict the performance would not significantly
degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,
5K+100K and 5K+100K+1M datasets in table 4, rows (e)–
(g), using the 1M words visual vocabulary. In going from
the smallest dataset to the largest, a 226-fold increase in the
number of images, the performance falls by just over 20%.
We attribute this drop in performance to a lack of sufficient
discrimination in the quantization for the larger dataset. As
will be seen, this performance loss is ameliorated to some
extent once spatial ranking is included.

4. Spatial re-ranking
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. We have until now consid-
ered the features in each image as a visual bag-of-words
and have ignored the spatial configurations of features. We
now investigate re-ranking the top-ranked results using spa-
tial constraints. The spatial verification procedure estimates
a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
visual words.

4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
that hypothesis.

Transformation dof Matrix
translation +
isotropic scale 3

»

a 0 tx
0 a ty

–

translation +
anisotropic scale 4

»

a 0 tx
0 b ty

–

translation +
vertical shear
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Table 6. (a) The three affine sub-groups compared in the spatial
re-ranking. (b) Computing H as H−1

2 H1, preserving “upness” for
the 5 dof case.

Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

fast spatial matching (FSM)

• 3, 4 or 5-dof transformation

• RANSAC with one hypothesis per
correspondence

both are quadratic in the number of correspondences

Lowe. ICCV 1999. Object recognition from local scale-invariant features.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
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Scaling up with AKM. We explore a number of different
vocabulary sizes for the 5K dataset in table 5. This shows a
peak in performance at 1M visual words, although for large
numbers of clusters, the performance curve appears quite
flat and we predict the performance would not significantly
degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,
5K+100K and 5K+100K+1M datasets in table 4, rows (e)–
(g), using the 1M words visual vocabulary. In going from
the smallest dataset to the largest, a 226-fold increase in the
number of images, the performance falls by just over 20%.
We attribute this drop in performance to a lack of sufficient
discrimination in the quantization for the larger dataset. As
will be seen, this performance loss is ameliorated to some
extent once spatial ranking is included.

4. Spatial re-ranking
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. We have until now consid-
ered the features in each image as a visual bag-of-words
and have ignored the spatial configurations of features. We
now investigate re-ranking the top-ranked results using spa-
tial constraints. The spatial verification procedure estimates
a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
visual words.

4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
that hypothesis.
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Table 6. (a) The three affine sub-groups compared in the spatial
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Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

fast spatial matching (FSM)

• 3, 4 or 5-dof transformation

• RANSAC with one hypothesis per
correspondence

both are quadratic in the number of correspondences

Lowe. ICCV 1999. Object recognition from local scale-invariant features.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
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for the 5K dataset. Each vocabulary is trained using AKM on
all 16.7M descriptors. There is a performance peak at 1 mil-
lion words. The spatial verification consistently improves perfor-
mance.

Scaling up with AKM. We explore a number of different
vocabulary sizes for the 5K dataset in table 5. This shows a
peak in performance at 1M visual words, although for large
numbers of clusters, the performance curve appears quite
flat and we predict the performance would not significantly
degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,
5K+100K and 5K+100K+1M datasets in table 4, rows (e)–
(g), using the 1M words visual vocabulary. In going from
the smallest dataset to the largest, a 226-fold increase in the
number of images, the performance falls by just over 20%.
We attribute this drop in performance to a lack of sufficient
discrimination in the quantization for the larger dataset. As
will be seen, this performance loss is ameliorated to some
extent once spatial ranking is included.

4. Spatial re-ranking
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. We have until now consid-
ered the features in each image as a visual bag-of-words
and have ignored the spatial configurations of features. We
now investigate re-ranking the top-ranked results using spa-
tial constraints. The spatial verification procedure estimates
a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
visual words.

4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
that hypothesis.
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Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

fast spatial matching (FSM)

• 3, 4 or 5-dof transformation

• RANSAC with one hypothesis per
correspondence

both are quadratic in the number of correspondences

Lowe. ICCV 1999. Object recognition from local scale-invariant features.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
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Hough pyramid matching (HPM)

fast spatial matching

• robust to deformation, multiple surfaces, invariant to transformations

• linear in the number of correspondences; no need to count inliers

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.
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performance vs. time
image search on World Cities 2M
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• more than 10 times faster, more accurate

Jégou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.
Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.
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pairwise matching vs. aggregation

HE and WGC for large scale image search 7
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Figure 2: Illustration of k-means clustering and our binary signature. (a) Fine
clustering. (b) Low k and binary signature: the similarity search within a
Voronoi cell is based on the Hamming distance. Key: ·=centroid, �=descriptor,
×=noisy versions of this descriptor.

RR n° 6709

Hamming embedding (HE)

• large vocabulary

• matching of binary signatures

• selective: discard weak votes
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Figure 1. Images and corresponding VLAD descriptors, for k=16 centroids (D=16×128). The components of the descriptor are represented
like SIFT, with negative components (see Equation 1) in red.

words k: we consider values ranging from k=16 to k=256.
Figure 1 depicts the VLAD representations associated

with a few images, when aggregating 128-dimensional
SIFT descriptors. The components of our descriptor map
to components of SIFT descriptors. Therefore we adopt the
usual 4× 4 spatial grid representation of oriented gradients
for each vi=1..k. We have accumulated the descriptors in 16
of them, one per visual word. In contrast to SIFT descrip-
tors, a component may be positive or negative, due to the
difference in Equation 1.

One can observe that the descriptors are relatively sparse
(few values have a significant energy) and very structured:
most high descriptor values are located in the same cluster,
and the geometrical structure of SIFT descriptors is observ-
able. Intuitively and as shown later, a principal component
analysis is likely to capture this structure. For sufficiently
similar images, the closeness of the descriptors is obvious.

3. From vectors to codes
This section addresses the problem of coding an image

vector. Given a D-dimensional input vector, we want to
produce a code of B bits encoding the image representa-
tion, such that the nearest neighbors of a (non-encoded)
query vector can be efficiently searched in a set of n en-
coded database vectors.

We handle this problem in two steps, that must be opti-
mized jointly: 1) a projection that reduces the dimension-
ality of the vector and 2) a quantization used to index the

resulting vectors. For this purpose, we consider the recent
approximate nearest neighbor search method of [7], which
is briefly described in the next section. We will show the
importance of the joint optimization by measuring the mean
squared Euclidean error generated by each step.

3.1. Approximate nearest neighbor

Approximate nearest neighbors search methods [4, 11,
15, 24, 27] are required to handle large databases in com-
puter vision applications [22]. One of the most popu-
lar techniques is Euclidean Locality-Sensitive Hashing [4],
which has been extended in [11] to arbitrary metrics. How-
ever, these approaches and the one of [15] are memory con-
suming, as several hash tables or trees are required. The
method of [27], which embeds the vector into a binary
space, better satisfies the memory constraint. It is, how-
ever, significantly outperformed in terms of the trade-off
between memory and accuracy by the product quantization-
based approximate search method of [7]. In the following,
we use this method, as it offers better accuracy and because
the search algorithm provides an explicit approximation of
the indexed vectors. This allows us to compare the vector
approximations introduced by the dimensionality reduction
and the quantization. We use the asymmetric distance com-
putation (ADC) variant of this approach, which only en-
codes the vectors of the database, but not the query vector.
This method is summarized in the following.

vector of locally aggregated
descriptors (VLAD)

• small vocabulary

• one aggregated vector per cell

• not selective

Jégou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.
Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.
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Figure 2: Illustration of k-means clustering and our binary signature. (a) Fine
clustering. (b) Low k and binary signature: the similarity search within a
Voronoi cell is based on the Hamming distance. Key: ·=centroid, �=descriptor,
×=noisy versions of this descriptor.

RR n° 6709

Hamming embedding (HE)

• large vocabulary

• matching of binary signatures

• selective: discard weak votes
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Figure 1. Images and corresponding VLAD descriptors, for k=16 centroids (D=16×128). The components of the descriptor are represented
like SIFT, with negative components (see Equation 1) in red.

words k: we consider values ranging from k=16 to k=256.
Figure 1 depicts the VLAD representations associated

with a few images, when aggregating 128-dimensional
SIFT descriptors. The components of our descriptor map
to components of SIFT descriptors. Therefore we adopt the
usual 4× 4 spatial grid representation of oriented gradients
for each vi=1..k. We have accumulated the descriptors in 16
of them, one per visual word. In contrast to SIFT descrip-
tors, a component may be positive or negative, due to the
difference in Equation 1.

One can observe that the descriptors are relatively sparse
(few values have a significant energy) and very structured:
most high descriptor values are located in the same cluster,
and the geometrical structure of SIFT descriptors is observ-
able. Intuitively and as shown later, a principal component
analysis is likely to capture this structure. For sufficiently
similar images, the closeness of the descriptors is obvious.

3. From vectors to codes
This section addresses the problem of coding an image

vector. Given a D-dimensional input vector, we want to
produce a code of B bits encoding the image representa-
tion, such that the nearest neighbors of a (non-encoded)
query vector can be efficiently searched in a set of n en-
coded database vectors.

We handle this problem in two steps, that must be opti-
mized jointly: 1) a projection that reduces the dimension-
ality of the vector and 2) a quantization used to index the

resulting vectors. For this purpose, we consider the recent
approximate nearest neighbor search method of [7], which
is briefly described in the next section. We will show the
importance of the joint optimization by measuring the mean
squared Euclidean error generated by each step.

3.1. Approximate nearest neighbor

Approximate nearest neighbors search methods [4, 11,
15, 24, 27] are required to handle large databases in com-
puter vision applications [22]. One of the most popu-
lar techniques is Euclidean Locality-Sensitive Hashing [4],
which has been extended in [11] to arbitrary metrics. How-
ever, these approaches and the one of [15] are memory con-
suming, as several hash tables or trees are required. The
method of [27], which embeds the vector into a binary
space, better satisfies the memory constraint. It is, how-
ever, significantly outperformed in terms of the trade-off
between memory and accuracy by the product quantization-
based approximate search method of [7]. In the following,
we use this method, as it offers better accuracy and because
the search algorithm provides an explicit approximation of
the indexed vectors. This allows us to compare the vector
approximations introduced by the dimensionality reduction
and the quantization. We use the asymmetric distance com-
putation (ADC) variant of this approach, which only en-
codes the vectors of the database, but not the query vector.
This method is summarized in the following.

vector of locally aggregated
descriptors (VLAD)

• small vocabulary

• one aggregated vector per cell

• not selective

Jégou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.
Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.
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aggregated selective match kernel (ASMK)

• borrow from HE the idea that descriptor pairs are selected by a
nonlinear function

KHE(X,Y ) :=
∑

x∈X

∑

y∈Y
1[dH(b(x), b(y)) ≤ τ ]

• borrow from VLAD the idea that residuals are aggregated per cell

KVLAD(X,Y ) := V (X)>V (Y ) =
∑

x∈X

∑

y∈Y
r(x)>r(y)

• combine aggregation within cells with selectivity between cells

KASMK(X,Y ) := σα(V̂ (X)>V̂ (Y ))

where x̂ := x/ ‖x‖ and σα a nonlinear selectivity function

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.
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impact of selectivity

α = 3, τ = 0.0

α = 3, τ = 0.25

correspondences weighed based on confidence

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.
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impact of aggregation and burstiness
k = 65k as in HE

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.
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results
image search: mAP

Dataset MA Oxf5k Oxf105k Par6k Holiday

ASMK∗ 76.4 69.2 74.4 80.0
ASMK∗ X 80.4 75.0 77.0 81.0
ASMK 78.1 - 76.0 81.2
ASMK X 81.7 - 78.2 82.2

HE [Jégou et al. ’10] 51.7 - - 74.5
HE [Jégou et al. ’10] X 56.1 - - 77.5
HE-BURST [Jain et al. ’10] 64.5 - - 78.0
HE-BURST [Jain et al. ’10] X 67.4 - - 79.6
Fine vocab. [Mikuĺık et al. ’10] X 74.2 67.4 74.9 74.9

• last state of the art before deep learning

• still state of the art on CNN features

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.
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locally optimized product quantization

• builds on PQ, searching fast in the compressed domain

• better captures the support of data distribution

• state of the art at billion scale for years

• deployed on entire Flickr collection

Jégou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.
Kalantidis and Avrithis. CVPR 2014. Locally Optimized Product Quantization for Approximate Nearest Neighbor Search.
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outline – part I

2 context

3 visual vocabularies

4 spatial matching

5 beyond vocabularies

6 exploring photo collections
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community photo collections

• applications: browsing, 3D reconstruction, location/landmark
recognition

• focus on popular subsets like landmarks and points of interest

� � � � � � � � � � �
� � � � � �

� � 	 � 
 � � 	 � � �
� � � � � � � � � � � �

	 � � � � �  �
� � � � 
 � � �

 � � � � � � � �
 � �  � � �

�  � � � � � 
 � � � 
 � � �
� � � � � � � � � � �

� � � � � 
 � 
 � � � � � � �
� � � � � 


� 
 � � � � � � � � � � � � �
� � �  � � � � 


� � �  � � � � � � �
� � � � � �

 � � � � � � � 

� � � � 
 � �  � �  �

� � � � � 
 � � 	 � � � � � � 
 � � �
� � � � � 
 � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � 

 � � � � �
� � � � � � � � 
 � �

 � � � � � �
� � � � � �

� � � � � � � � � �
� � � � � � � � � �

	 � � 	 � � � � 
 �
� � � � � � � �

� � � � 
 � � � � � �
� � � � � � � � �

� � � � � � � � 
 �
	 � � � � �

� � � 
 � � � � � � � 
 � � �
� � � � � � �

� � 
 � �
� � � � � � � �

� � � � � � 
 � � � � 
 �
� � 
 � � � � �

Figure 2: Representative images for the top landmark in each of the top 20 North American cities. All parts of the figure, including

the representative images, textual labels, and even the map itself were produced automatically from our corpus of geo-tagged photos.

about 110,000 photos, again making it difficult to generalize their

results. Their method also does not scale well to a global image

collection, as we discussed in Section 3. There is a considerable

earlier history of work in the Web and digital libraries community

on organizing photo collections; however those papers in general

make little or no use of image content (e.g., [1]) and again do not

provide large-scale quantitative results.

8. CONCLUSIONS
In this paper we introduce techniques for analyzing a global col-

lection of geo-referenced photographs, and evaluate them on nearly

35 million images from Flickr. We present techniques to automat-

ically identify places that people find interesting to photograph,

showing results for thousands of locations at both city and land-

mark scales. We develop classification methods for predicting these

locations from visual, textual and temporal features. These meth-

ods reveal that both visual and temporal features improve the ability

to estimate the location of a photo compared to using just textual

tags. Finally we demonstrate that representative photos can be se-

lected automatically despite the large fraction of photos at a given

location that are unrelated to any particular landmark.

The techniques developed in this paper could be quite useful in

photo management and organization applications. For example, the

geo-classification method we propose could allow photo manage-

ment systems like Flickr to automatically suggest geotags, signif-

icantly reducing the labor involved in adding geolocation annota-

tions. Our technique for finding representative images is a practical

way of summarizing large collections of images. The scalability of

our methods allows for automatically mining the information latent

in very large sets of images; for instance, Figures 2 and 3 raise the

intriguing possibility of an online travel guidebook that could au-

tomatically identify the best sites to visit on your next vacation, as

judged by the collective wisdom of the world’s photographers.

In this paper we have focused on using geospatial data as a form

of relational structure, and combining that with content from tags

and image features. An interesting future direction is to relate this

back to the explicit relational structure in the social ties between

photographers. Preliminary investigation suggests that these can

be quite strongly correlated — for example, we observe that if two

users have taken a photo within 24 hours and 100 km of each other,

on at least five occasions and at five distinct geographic locations,

there is a 59.8% chance that they are Flickr contacts.
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view clustering

• geo clustering: according to geographic location

• visual clustering: according to visual similarity (inliers)

• both landmark and non-landmark images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.
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view alignment
aligned images
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view alignment
aligned images
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scene map construction
before feature clustering

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.
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scene map construction
after feature clustering

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.
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results
image search on European Cities 1M

Method Time mAP

Baseline BoW 1.03s 0.642
QE1 20.30s 0.813
QE2 2.51s 0.686
Scene maps 1.29s 0.824

• QE1: iterative query expansion, re-query using the retrieved images
and merge, 3 times iteratively

• QE2: create scene map using the initial results and re-query once

• scene maps: similar to QE1 but as fast as baseline

Chum, Philbin, Sivic, Isard and Zisserman. ICCV 2007. Total Recall: Automatic Query Expansion With a Generative Feature
Model for Object Retrieval.
Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.
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http://viral.image.ntua.gr
online since 2008

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.

http://viral.image.ntua.gr
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query

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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results

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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suggested tags

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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related wikipedia articles

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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VIRaL Explore

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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VIRaL Explore

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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VIRaL Routes

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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achievements and more challenges

• one-off construction of vocabularies

• fast and more accurate spatial matching

• beyond BoW: approximate descriptors, fighting burstiness

• nearest neighbor search in compressed domain

• dataset-wide analysis improves image representation

• widespread dissemination of novel applications

• either high quality or compact representation
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part II

exploring deeper
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outline – part II

7 context

8 searching on manifolds

9 spatial matching

10 discovering objects
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AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

learning visual representations from raw data works at scale
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.
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learning visual representations from raw data works at scale
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

learning visual representations from raw data works at scale
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.
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learning visual representations from raw data works at scale

���������	��
����������������������������������� �"! �

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

��:LH%k%�#k¨Vb31A1*%: 01+@Ar06.%31+�2/}!PZ+�h;+r06K��#To,��w24CUMU24_L.#01:L24C%,/_!hX+@.%31,/_�hX+r0G8f2436g�T#*%+@31+b}�243fD%:LH4: 065�31+@A@24H4C%: 01:L24C�k lv,/AO*�>#_�,/C%+Y:L5�,§}�+B,R01.#31+�F�,/>ZT�:�k +4k%,§51+r0�2/}�.%C%: 0658X*#2451+Y8f+@:LH4*U015b,/31+YA@24C%5 0131,/:LC%+@D�012�Q�+�:LD#+BCU06:LA�,/_�k

å�ê©è"ç�ï1ëíï�å�è"ÿ�ä ï¾î�å�æ�ê�ø�éÆè ç�ï1æ�ä"ï�úiø�ì�ÿ�êû�å%�aï�ädð&ã�ç�ï�è"ä�å�ø�é�å�
�û�ï
��ì�ï,*¹��ø�ï�éiè�å�é�ù�
�ø�å�ê��ì�éiè"ä ì�ûkè ç�ï�ïUÄ�ï���è©ì�ë¹è"ç�ï1ê"ø	��î¼ì�ø�ùOé�ì�é!�û�ø�é�ïdå�ä ø³è@�að��}ëkè ç�ï���ì�ï,*¹��ø�ï�éiè ø�êpê�î�å�û�û1��è"ç�ï�é5è"ç�ï©ÿ�é�ø�è�ì�æNï�ä�å	è ï�êø�é5å¹�iÿ�åaê�ø��}û�ø�é�ï�å�ä�î\ì�ù�ï���å�é�ù1è ç�ï©ê"ÿ�
!�«ê"å�î\æ�û�ø�é���û�å%��ï�ä�î¼ï�ä ï�û	�

�û�ÿ�ä�ê¼è"ç�ïOø�é�æ�ÿ�è�ð �}ë¸è ç�ï¤��ì�ï,*¹��ø�ï�éiè1ø�ê¾û�å�ä��aï��wê"ÿ�
!�«ê å�î¼æ�û�ø�é��ÿ�é�ø�è ê{��å�é�
�ï�ê"ï�ï�é&å�êYæNï�ä"ëíì�ä î¼ø�é��¾å ��é�ìaø�ê��:ý�� ¼ìaä�åL��é�ìaø�ê��
��ñ{"�¸ëíÿ�é��£è ø�ìaé¼ù�ï�æNï�é�ù�ø�é��®ì�éSè"ç�ïYúrå�û�ÿ�ï¹ì�ë�è ç�ï�
�ø�åaê�ðgþ�ÿ�����ïdê@�ê"ø�úaïSû�å%��ï�ä êpì�ë���ì�é�úaì�û�ÿ�è"ø�ì�é�ê¸å�é�ù�ê"ÿ�
!�«ê"å�î¼æ�û�ø�é��5å�ä ï�è@��æ�ø���å�û�û	�å�û�è"ï�ä"é�å	è"ïdùf��ä ï�ê"ÿ�û�è"ø�é��¾ø�éOå���
�øª�}æ���ä å�î\ø�ù B+wå	èpï�å���ç&û�å%��ï�ä���è"ç�ïé�ÿ�î�
Nï�ä¸ì�ëgëíïdå	è ÿ�ä"ïSî�å�æ�ê�ø�êpø�é ��ä ï�å�ê"ï�ù&åaê è ç�ïSê"æ�å�è"ø�å�ûUä"ïdê�ìaû�ÿ!�è"ø�ì�é\ø�êUù�ï���ä ï�åaê�ïdù�ð (wå���ç©ÿ�é�ø³ègø�é�è ç�ï¹è"ç�ø�ä�ù�ç�ø�ù�ù�ï�éSû�å%��ï�äBø�é�©��?�ÿ�ä ï��¹î�å%��ç�årúaïgø�é�æ�ÿ�èb��ì�é�é�ï��£è ø�ìaé�ê�ëíä ì�î ê�ï�ú�ï�ä å�ûrëíï�å	è ÿ�ä ï�î�å�æ�êø�é�è ç�ïæ�ä ï�ú�ø�ì�ÿ�ê�û�å%��ï�ä�ðkã�ç�ï���ìaé�ú�ì�û�ÿ�è ø�ìaé��	ê"ÿ�
!�«ê"å�î¼æ�û�ø�é��À��ì�îÀ�

�ø�é�å	è ø�ìaé���ø�é�ê�æ�ø�ä ï�ù�
��&õ ÿ�
�ï�û�å�é�ù � ø�ïdê�ï�û
< ê�é�ì�è"ø�ì�é�ê�ì�ë �"ê"ø�îÀ�æ�û�ï�®å�é�ù �R��ìaî\æ�û�ï�£����ï�û�û�ê���ó¹åaêkø�î¼æ�û�ï�î¼ï�éaè ï�ù\ø�éÀ��ÿ�ô�ÿ�ê�ç�ø�î�å=< êñ ï�ì!��ì��aé�ø�è"ä ì�é � b ��	O��è"ç�ìaÿ���ç&é�ì¥��û�ì�
�å�û�û	�5ê�ÿ�æNï�ä ú�ø�ê"ï�ù5û�ï�å�ä"é�ø�é��æ�ä ì!��ï�ù�ÿ�ä"ïê"ÿ���ç5å�ê�
�å���ôZ�}æ�ä ì�æ�å��aå	è ø�ìaé�ó¹åaêYårú	å�ø�û�å�
�û�ïpè"ç�ï�é�ð��û�å�äR��ï�ù�ï���ä ï�ï©ì�ë^ø�éiú	å�ä"ø�å�é���ïè"ì¥��ï�ì�î¼ï�è ä"ø��®è"ä�å�é�ê{ëíìaä"î�å	è ø�ìaé�êYì�ëè"ç�ï\ø�é�æ�ÿ�è��å�é¦
�ï�å���ç�ø�ï�ú�ï�ù·óYø³è çOè ç�ø�ê®æ�ä"ì���ä ï�ê ê�ø�ú�ï©ä ï�ù�ÿ��£è ø�ìaéì�ë�ê"æ�å	è ø�å�û�ä ï�ê"ì�û�ÿ�è"ø�ì�é¹��ìaî¼æ�ï�é�ê"å�è"ïdù¨
Z�\åæ�ä ì��aä"ïdê"ê"ø�úaï^ø�é���ä ï�åaê�ïì�ëNè"ç�ï ä"ø���ç�é�ïdê"êUì�ë�è ç�ï ä ï�æ�ä ï�ê"ï�éiè å�è"ø�ì�é�Á»è"ç�ï é�ÿ�î�
Nï�ä�ì�ë�ëíïdå	è ÿ�ä"ïî�å�æ�ê/Â£ðþ�ø�é ��ïå�û�û�è ç�ï®ówï�ø��açiè ê¹å�ä ï�û�ï�å�ä é�ïdù¾óYø�è"ç�
�å���ôZ�}æ�ä"ìaæ�å?�iå	è ø�ìaé��
��ìaé�ú�ì�û�ÿ�è ø�ìaé�å�û�é�ï�è{ówìaä"ô�ê¨��å�é�
Nï·ê�ï�ï�éÄå�ê�ê���éaè ç�ï�ê"ø	¾�ø�é��Oè ç�ï�ø�äì	óYé ëíï�å�è"ÿ�ä ï�ïU£�è"ä�å���è"ìaä�ð¾ã�ç�ï1ówï�ø��açaè©ê"ç�å�ä ø�é��:è"ï���ç�é�ø	�iÿ�ï1ç�å�êè"ç�ï�ø�éiè"ï�ä ï�ê�è"ø�é�� ê�ø�ù�ï:ïUÄ�ï��£è¼ì�ë ä ï�ù�ÿ���ø�é��·è ç�ï:éiÿ�î�
Nï�ä¼ì�ëYëíä ï�ïæ�å�ä å�î\ï�è"ï�ä ê���è"ç�ï�ä"ï�
�� ä ï�ù�ÿ���ø�é�� è ç�ï ����å�æ�å���ø³è@��Æì�ë©è"ç�ï î�åo�
��ç�ø�é�ï�å�é�ù¼ä"ïdù�ÿ���ø�é��®è ç�ï��iå�æ¨
�ï�è{ówï�ï�é¼è ï�ê�è^ï�ä ä"ìaä�å�é�ù\è ä å�ø�é�ø�é��ï�ä ä ì�ä � b&c'	}ð¾ã�ç�ï�é�ï�è{ówìaä"ô·ø�é�©���ÿ�ä"ï`�&��ìaéiè å�ø�é�ê4b&c���� ;6��5 ��ì�é!�é�ï#�£è"ø�ì�é�ê��o
�ÿ�èkìaé�û	� ����� �6����è"ä�å�ø�é�å?
�û�ï^ëíä"ï�ï^æ�å�ä å�î\ï�è"ï�ä êX
�ï#��å�ÿ�ê�ïì�ëUè"ç�ïówï�ø��açaè ê"ç�å�ä ø�é���ð
�Bø�£�ï�ù��«ê"ø�¾�ï\�wìaéiúaì�û�ÿ�è"ø�ì�é�å�ûSñ�ï�è{ó¹ì�ä ô�êOç�årúaïÃ
Nï�ï�éÂå�æ�æ�û�ø�ï�ùè"ì î�å�éZ�Kå�æ�æ�û�ø���å	è ø�ìaé�ê��¹å�î\ìaé�� ì�è"ç�ï�ä¾ç�å�é�ù�óYä ø³è ø�é�� ä ï���ì��aé�øª�è"ø�ì�é$� b ��	O� � b�� 	O��î�å���ç�ø�é�ïU�}æ�ä ø�éiè ï�ù ��ç�å�ä�å��£è ï�äpä"ï#��ì��aé�ø�è"ø�ì�é � b ��	1�ì�é��mû�ø�é�ï9ç�å�é�ù�óYä ø³è ø�é��Âä ï���ì���é�ø³è ø�ìaé � b�5 	O�·å�é�ù/ë�å���ï9ä ï���ì��aé�øª�è"ø�ì�é � b�; 	}ð �Bø�£�ï�ù��«ê"ø�¾�ïÃ��ìaéiúaì�û�ÿ�è"ø�ì�é�å�û©é�ï�è{ówìaä"ô�ê:è ç�å	èÆê�ç�å�ä"ïó¹ï�ø	��çiè ê¼å�û�ì�é�� å ê�ø�é��aû�ï:è"ï�î¼æ�ìaä å�û�ù�ø�î¼ï�é�ê�ø�ì�éÄå�ä ï�ô�é�ì	óYé å�êã�ø�î\ï��O"pï�û�å%�pñ�ï�ÿ�ä�å�ûiñ ï�è{ówìaä"ô�ê�Á�ã$"¸ñ�ñpêRÂ�ðUã$"¸ñ�ñpê;ç�årú�ï�
Nï�ï�éÿ�ê"ï�ùOø�é·æ�ç�ì�é�ï�î¼ïSä ï���ì���é�ø³è ø�ìaé�ÁíóYø�è"ç�ìaÿ�è®ê"ÿ�
!�«ê å�î¼æ�û�ø�é���Â�� c��'	1�

� c�¿
	O�¼ê�æNì�ôaï�éòó¹ì�ä�ù ä ï���ì���é�ø�è"ø�ì�é Á�óYø³è ç(ê"ÿ�
!�«ê å�î¼æ�û�ø�é���Â � c0� 	1�
� c b 	O�ì�é��mû�ø�é�ï ä"ï#��ì��aé�ø�è"ø�ì�é ì�ë¼ø�ê"ì�û�å	è ï�ùWç�å�é�ù�óYä ø³è"è"ï�éy��ç�å�ä�å��4�è"ï�ä ê4� c&c&	1��å�é�ù5ê�ø	��é�å	è"ÿ�ä"ï¸ú�ï�ä"ø�© ��å�è"ø�ì�é � c!��	}ð

' �E� ¸�º�¸U»Z(��
ã�ç�ø�ê�ê�ï#�£è"ø�ì�é&ù�ïdê���ä"ø	
Nï�êYø�é5î\ìaä"ïù�ï�è å�ø�û;è"ç�ï©å�äR��ç�ø�è"ï#�£è ÿ�ä"ï®ì�ë

��ïdñ ï�èB� �!�Yè ç�ïx�wìaé�ú�ì�û�ÿ�è ø�ìaé�å�û¸ñ ï�ÿ�ä å�ûpñ ï�è{ówìaä"ôÄÿ�ê"ï�ù6ø�é-è"ç�ïïU£�æNï�ä ø�î¼ï�éaè�ê�ð �;ï�ñ ï�èB� ����ì�î¼æ�ä ø�ê"ï�ê �©û�å%�aï�ä�ê��ié�ì�è$��ìaÿ�éiè"ø�é��Sè"ç�ïø�é�æ�ÿ�è#��å�û�û�ì�ë;óYç�ø���ç¥��ì�éiè å�ø�é1è"ä�å�ø�é�å?
�û�ï¸æ�å�ä�å�î¼ï�è"ï�ä�ê'Á�ówï�ø��açiè ê/Â£ðã�ç�ï�ø�é�æ�ÿ�è;ø�ê;åSb �%£ b0�^æ�øª£�ï�û�ø�î�å?�aï�ð;ã�ç�ø�ê;ø�ê�ê"ø	��é�ø�© ��å�éiè"û	��û�å�äR��ï�äè"ç�å�é5è"ç�ï©û�å�ä��aï�ê�è'��ç�å�ä�å���è"ï�äYø�é5è ç�ï�ù�å�è å?
�å�ê"ï¢Á�å	èpî\ìiê{è��A�o£��6�æ�ø�£�ï�û�ê���ï�éaè ï�ä ï�ù�ø�é åC�65o£��A5 ©�ï�û�ù�Â�ð1ã�ç�ï�ä ï�å�ê"ì�é ø�ê®è"ç�å�è©ø³è©ø�êù�ïdê�ø�ä å�
�û�ïè"ç�å�èpæNì�è ï�éiè"ø�å�ûkù�ø�ê{è ø�é���è"ø�ú�ï�ëíï�å	è ÿ�ä ï�ê�ê"ÿ���ç·åaêpê�è"ä ì�ôaïï�é�ù��mæNì�ø�éiè ê¹ì�ä���ìaä"é�ï�ä���å�é1å�æ�æNï�å�äE�G²�»µ¯�¸ ?/¸�²�»r¸U¬gì�ë�è"ç�ïpä ï���ï�æ!�è"ø�ú�ï�©�ï�û�ù:ì�ë;è"ç�ïç�ø��aç�ï�ê�èB�}û�ï�ú�ï�ûNëíï�å	è ÿ�ä ï®ù�ï�è"ï#�£è ì�ä�ê�ðY�«éO��ïdñ ï�è����è"ç�ïpê"ï�èwì�ë���ï�éiè ï�ä�ê�ì�ë�è ç�ï�ä ï���ï�æ�è ø�úaï$©�ï�û�ù�êwì�ë�è ç�ï�û�å�ê�è���ì�é�ú�ìaû�ÿ!�è"ø�ì�é�å�û�û�å%��ï�ä�ÁO�;b���ê"ï�ï$
Nï�û�ì	ó'Â;ëíì�ä îÂå4�A�?£��A�¸å�ä ï�åpø�é\è"ç�ï'��ï�éaè ï�äì�ë;è"ç�ï4b �o£ b �®ø�é�æ�ÿ�èdð^ã�ç�ï¸ú	å�û�ÿ�ï�ê¹ì�ëBè"ç�ï¸ø�é�æ�ÿ�è æ�ø�£�ï�û�ê�å�ä ï�é�ìaäB�î�å�û�ø�¾�ï�ù�ê�ì�è"ç�å�è®è"ç�ï¨
�å���ôZ�aä"ìaÿ�é�ù&û�ï�úaï�û$ÁíóYç�ø³è ï#Ât��ìaä"ä ï�ê"æNì�é�ù�êè"ì&å:ú	å�û�ÿ�ï¼ì�ë�� ��ð�¿\å�é�ùOè"ç�ï¼ëíìaä"ï���ä ì�ÿ�é�ù�Áµ
�û�å���ô�Â���ìaä"ä ï�ê"æNì�é�ù�êè"ìx¿að�¿��'��ð¼ã�ç�ø�êî�å�ô�ï�ê¸è ç�ï�î¼ï�å�é ø�é�æ�ÿ�è�ä"ìaÿ���ç�û��!���Bå�é�ù�è"ç�ïú	å�ä ø�å�é���ï¸ä ì�ÿ��aç�û�� ¿¸óYç�ø	��ç5å�����ï�û�ï�ä�å	è ï�ê¹û�ï�å�ä é�ø�é��O� c � 	}ð
�«é®è"ç�ï^ëíì�û�û�ì	óYø�é����%��ìaé�ú�ì�û�ÿ�è ø�ìaé�å�û	û�å%��ï�ä ê�å�ä"ïgû�å?
Nï�û�ï�ù��§£f�	ê"ÿ�
!�ê å�î¼æ�û�ø�é���û�å%�aï�ä�ê�å�ä"ï©û�å?
Nï�û�ï�ù þZ£f��å�é�ù·ëíÿ�û�û	�Z�O��ì�é�é�ï��£è ï�ù&û�å%��ï�ä êå�ä ï®û�å�
�ï�û�ïdù¥�X£f��óYç�ï�ä"ï�£:ø�ê¹è ç�ïû�å%�aï�ä�ø�é�ù�ïU£�ð
�;å%��ï�ä��{¿¾ø�ê�å���ìaé�ú�ì�û�ÿ�è ø�ìaé�å�ûgû�å%��ï�ä©óYø³è ç)�5ëíï�å�è"ÿ�ä ï�î�å�æ�ê�ð

(^å���ç¼ÿ�é�ø�è¹ø�é�ï�å���ç¼ëíï�å	è ÿ�ä ï î�å�æ¾ø�ê§��ì�é�é�ï#�£è ï�ù¼è ì�å �%£��®é�ï�ø	��ç!�

Nì�ä ç�ì�ì�ù�ø�é�è"ç�ï�ø�é�æ�ÿ�èdðUã�ç�ï�ê"ø	¾�ï^ì�ë�è ç�ï^ëíïdå	è ÿ�ä"ï¹î�å�æ�êUø�ê �A5o£��65óYç�ø���çOæ�ä ï�úaï�éiè êt��ì�é�é�ï#�£è ø�ìaé·ëíä ì�î è"ç�ï\ø�é�æ�ÿ�èëíä"ìaî ë�å�û�û�ø�é��:ì?Äè"ç�ï�
Nì�ÿ�é�ù�å�äR��ð��{¿���ì�éiè å�ø�é�ê�¿ �6�¼è"ä�å�ø�é�å?
�û�ïSæ�å�ä�å�î¼ï�è ï�ä�ê��Nå�é�ù
¿ � �!� b6�&c���ìaé�é�ï#�£è"ø�ì�é�ê�ð
�;å%��ï�ä þ �\ø�ê�å�ê�ÿ�
��}ê å�î¼æ�û�ø�é��\û�å%��ï�äYóYø³è ç �Sëíï�å	è ÿ�ä ïî¼å�æ�êYì�ëê"ø�¾�ï�¿�c?£f¿]c�ð#(^å���ç�ÿ�é�ø³ègø�é\ïdå���ç�ëíï�å	è ÿ�ä ï¹î�å�æSø�ê���ìaé�é�ï���è"ïdù©è ì¸å

�%£��®é�ï�ø	��ç�
�ìaä"ç�ìiì�ù¼ø�é�è"ç�ï{��ìaä"ä ï�ê"æNì�é�ù�ø�é��®ëíïdå	è"ÿ�ä"ïpî¼å�æ�ø�é&�{¿�ðã�ç�ï¸ëíì�ÿ�äYø�é�æ�ÿ�è ê�è ì�å�ÿ�é�ø³è ø�é·þ ��å�ä"ïåaù�ù�ï�ù���è"ç�ï�é�îSÿ�û³è ø�æ�û�ø�ï�ù

�� å&è"ä�å�ø�é�å�
�û�ï���ì�ïC*¢��ø�ï�éaè#��å�é�ùKå�ù�ù�ï�ùÆè ì å·è"ä�å�ø�é�å?
�û�ï¢
�ø�å�ê�ðã�ç�ï·ä ï�ê"ÿ�û�è¾ø�ê1æ�å�ê ê"ï�ùKè"ç�ä ì�ÿ���çHå ê�ø	��î¼ìaø�ù�å�û�ëíÿ�é���è"ø�ì�é�ð ã�ç�ï
�%£��1ä"ï#��ï�æ�è"ø�ú�ï�©�ï�û�ù�êå�ä"ïSé�ì�é!�}ì	ú�ï�ä"û�å�æ�æ�ø�é�����è"ç�ï�ä"ï�ëíì�ä ï�ëíïdå	è"ÿ�ä"ïî�å�æ�ê�ø�éhþ��5ç�årú�ï¼ç�å�û³ë�è ç�ï1é�ÿ�î�
�ï�ä�ì�ë�ä ì	ó ê©å�é�ùx��ì�û�ÿ�î¼é å�êëíï�å�è"ÿ�ä ï®î�å�æ�êYø�é �{¿�ð �Bå%��ï�äYþ �\ç�åaêt¿ ��è"ä�å�ø�é�å�
�û�ï®æ�å�ä å�î¼ï�è"ï�ä êå�é�ù.��� 5�56�À��ì�é�é�ï���è"ø�ì�é�ê�ð
�;å%��ï�ä��;b¼ø�êpå¢��ì�é�ú�ìaû�ÿ�è"ø�ì�é�å�û�û�å%�aï�ä óYø�è"ç�¿��\ëíï�å�è"ÿ�ä ï©î�å�æ�ê�ð

(^å���ç5ÿ�é�ø�è�ø�é&ïdå���ç:ëíï�å�è"ÿ�ä ï©î�å�æ5ø�ê'��ì�é�é�ï#�£è ï�ù�è"ì1ê"ï�úaï�ä�å�û �o£ �é�ï�ø��açZ
Nì�ä ç�ì�ì�ù�ê5å	è&ø�ù�ï�éiè"ø���å�û®û�ì!��å�è"ø�ì�é�ê5ø�é åKê"ÿ�
�ê"ï�è·ì�ë¼þ �=< êëíï�å�è"ÿ�ä ï:î¼å�æ�ê�ðKãUå?
�û�ï¥�\ê�ç�ì	ó ê�è ç�ï&ê�ï�è\ì�ë®þ �·ëíï�å�è"ÿ�ä ï:î¼å�æ�ê

6

8

10

−10 −5 0 5 10

0

2

4

6

8

10

x

[x
] +

CNN, SGD ImageNet graphics processing rectified linear
backprop (1.2M images) units (GPU) unit (ReLU)

Chellapilla, Puri and Simard. FHR 2006. High Performance Convolutional Neural Networks for Document Processing.
Krizhevsky, Sutskever and Hinton. NIPS 2012. ImageNet Classification with Deep Convolutional Neural Networks.



43/104

AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.
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learning visual representations from raw data works at scale
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instance-level tasks
Under review as a conference paper at ICLR 2015

23/3 12/5 22/6 15/11 20/12

50

60

70

80

90

PCA whiteningPCA whitening

optimized ConvNet for transferabilityoptimized ConvNet for transferability

1st f.c. layer → last conv. layer,

deeper network

increase dim. of input to ConvNet

52

68

71.2

79.1

84.4

Date in 2014

m
A
P

23/3 12/5 22/6 15/11 20/12

50

60

70

80

90

64.2

84.3

87.1

90 89.7

Date in 2014

m
A
P

Oxford5k buildings Holidays

Figure 1: Rapid progress of the performance of ConvNet based methods on two standard image retrieval
datasets during 2014. Each blue bar shows the publication of a result which improved the performance of a
ConvNet method. The red horizontal line marks the performance of the state-of-the-art non-ConvNet method
with representation ≤ 100k and no search refinement procedure. The rightmost bar in each figure is the result
of the performance of the medium representation presented in this paper. The jumps in performance over time
are due to the following improvements. From March to May (Razavian et al., 2014b), the ConvNet feature was
post-processed with PCA whitening (Jégou & Chum, 2012). In June, factors affecting the transferability were
listed and categorized (Azizpour et al., 2014a) and the architecture and training of our ConvNet for retrieval
were optimized w.r.t. these factors. In November (Azizpour et al., 2014b), the ConvNet representation extracted
was from the last convolutional layer instead of the first fully connected layer and also a deeper network was
employed. Finally in December, this paper, the dimension of the image input to the ConvNet was increased
from 227×227×3 to 576×576×3.

improvements in performance have been brought about by building better ConvNet representations.
Section 3 details these improvements, in particular, switching the ConvNet representation from the
first fully connected layer to the final convolutional layer. One should view this part of the paper as
the culmination of a series of papers we have written exploring the expressiveness and usefulness of
ConvNet representation, but distilled towards the task of visual image retrieval.

Another issue for visual instance retrieval is the dimensionality and memory requirements of the
image representation. Usually two separate categories are considered. These are the small footprint
representations encoding each image with less than 1kbytes and the medium footprint representa-
tions which have dimensionality between 10k and 100k. The small regime is required when the
number of images is massive and memory is a bottleneck, while the medium regime is more useful
when the number of images is less than 50k.

Our representation (∼16k in dimensionality), described in section 3, falls into the medium regime
category. Its performance is sufficiently good to make us believe that it is only a matter of time
before a ConvNet based method will more-or-less solve the medium sized image datasets that exist
today with medium regime representations, see section 3.3 for our justification. We feel the next
challenge, without the introduction of massive and diverse datasets, is to solve the existing datasets
with very low memory representations that require no PCA-whitening or specialized fine-tuning on
the test dataset. Section 4 explains our approach toward this problem.

To further push this challenge and after being inspired by the recent work of Chatfield et al. (2014b),
we report the results for a tiny representation. We define a tiny image representation as one that
takes 32bytes or less to store and is learnt independently of the test dataset. Such a compressed rep-
resentation would allow large scale searches to be completed on mobile phones (Panda et al., 2013)
and massive searches on the cloud(Quack et al., 2004). In section 4 we describe a first attempt to
build small and tiny ConvNet representations - basically a streamlined version of the representation
introduced in section 3 without PCA whitening. Performance does drop as we go from the medium
to the small and then finally to the tiny representation, see figure 4. However, the drop is not as large
as one would anticipate and offers the promise that this is a solvable problem, because as this paper
reports it is amazing what performance gains can be achieved in a year.

2

regional CNN features

• jump more than 30% mAP in
few months

• outperform SIFT pipeline

self-supervision

• max-pooling (MAC/R-MAC),
generalized mean (GeM)

• SfM pipeline based on SIFT,
BoW and RANSAC

Razavian, Sullivan, Maki and Carlsson. arXiv 2015. Visual Instance Retrieval with Deep Convolutional Networks.
Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
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opportunities and challenges

• powerful global representation

• feature space still exhibits manifold structure

• graph-based methods now feasible but still do not scale well

• regional or local information often overlooked

• richness of convolutional activations not well understood

• dataset-wide analysis often missing in favor of stochastic updates
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outline – part II

7 context

8 searching on manifolds

9 spatial matching

10 discovering objects
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graph-based methods

now that a high-quality representation is possible with just one or few
vectors per image, graph-based methods are more relevant than ever
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 0× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 2× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 3× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 4× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 5× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 6× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 7× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 8× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 9× 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds (diffusion)

• random walk with restart (RWR)

f (τ) := αWf (τ−1) + (1− α)y

where y: query vector, W: adjacency matrix, f : ranking vector

• apply to regional CNN features

• solve linear system
Lαf = y

by conjugate gradient (CG) method, where regularized Laplacian

Lα :=
I − αW
1− α

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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CG vs. RWR
image search with regional VGG features (d = 512)
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Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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fast spectral ranking (FSR)
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• low-pass filtering in the frequency domain

• or, “soft” dimensionality reduction

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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results
mAP using ResNet-101 features (d = 2, 048)

Method m Instre Oxf5k Oxf105k Par6k Par106k

Regional Features: R-Match

Euclidean 21 71.0 88.1 85.7 94.9 91.3
AQE 21 77.1 91.0 89.6 95.5 92.5
CG 5 88.4 95.0 90.0 96.4 95.8
FSR 5 88.5 95.1 93.0 96.5 95.2

• helps particularly on Instre, which contains small objects on
background clutter

• FSR (rank r = 5k) has same performance as CG, is two orders of
magnitude faster, needs 3× space

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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hard examples?

(AP: 92.1) #5 #32 #51 #70 #71 #76 #79 #126

(AP: 92.7) #2 #4 #8 #61 #68 #72 #75 #108

• red: drift

• blue: incorrect annotations

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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Oxford and Paris revisited (RevOP)

→ → →

→ → →

→ → →

fixed annotation errors

→

→

1 million hard distractors

new queries

Radenovic, Iscen, Tolias, Avrithis, Chum. CVPR 2018. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking.
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7 context
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revival of local features

DET Crop

ORI Rot DESC

LIFT pipeline
SCORE MAP

softargmax

description 
vector

learned invariant feature
transform (LIFT)

• learned SIFT: detection,
orientation estimation,
descriptor extraction

• trained on patch-level labels

DELF Pipeline

Large-Scale
Index

Features

DELF 
Features

Query Image

DELF Pipeline

Index Query 

NN Features

Attention Scores

Database Images

Retrieved Images

Geometric 
Verification deep local features (DELF)

• self-attention to detect keypoints

• trained on image-level labels

Yi, Trulls, Lepetit and Fua. ECCV 2016. LIFT. Learned Invariant Feature Transform.
Noh, Araujo, Sim, Weyand and Han. ICCV 2017. Large-Scale Image Retrieval With Attentive Deep Local Features.
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motivation

view 1 view 2 view 3

map 1

map 2

• different local features present in each feature map (channel)

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.
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deep spatial matching (DSM)

input image feature map local features inliers

x1
A1 P1

smatch

x2 A2 P2

• local features detected by MSER independently per channel

• inliers found by fast spatial matching

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
Matas, Chum, Urban and Pajdla. BMVC 2002. Robust Wide Baseline Stereo From Maximally Stable Extremal Regions.
Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.
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example

• local maxima on each activation channel are “local features”

• channels are “visual words” - no vocabulary needed

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.
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results
mAP on RevOP using diffusion

Method
Medium Hard

ROxf +R1M RPar +R1M

V-MAC? 67.7 56.8 39.8 29.4
V-MAC?+DSM 72.0 59.2 43.9 32.0
R-MAC?↑ 73.9 61.3 45.6 31.9
R-MAC?↑+DSM 76.9 65.7 49.4 35.7

V-GeM 69.6 60.4 41.1 33.1
V-GeM+DSM 72.8 63.2 45.4 35.4
R-GeM↑ 70.1 67.5 41.5 39.6
R-GeM↑+DSM 75.0 70.2 46.2 41.9

• V: VGG-16, R: ResNet-101

• MAC: max-pooling, GeM: generalized mean pooling

Radenovic, Tolias and Chum. PAMI 2018. Fine-Tuning CNN Image Retrieval with No Human Annotation.
Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.
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from attention to detection

object proposals

• class-agnostic objectness
measure

• essential component of modern
two-stage object detectors

unsupervised object discovery

• segmentation-based ROIs

• rank by link analysis on entire
dataset (PageRank)

Alexe, Deselaers and Ferrari. CVPR 2010. What is an Object?
Kim and Torralba. NIPS 2009. Unsupervised Detection of Regions of Interest Using Iterative Link Analysis.
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feature saliency (FS) map

• sparsity-sensitive channel weights on convolutional activations

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.
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region detection with EGM

• EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.
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object saliency (OS) map

image

S

F̂

graph W

• centrality extended to unseen image patches by non-parametric
regression

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.
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FS vs. OS

image FS OS

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.
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results
mAP on Instre and RevOP using global features

Method
Medium Hard

Instre ROxf RPar ROxf RPar

GeM 57.0 62.0 69.3 33.7 44.3
FS.EGM 57.7 63.0 68.7 34.5 43.9
OS.EGM 61.3 64.2 69.9 35.9 46.1

• global features, pooled from FS/OS regions

• helps particularly on Instre, which contains small objects on
background clutter

Siméoni, Iscen, Tolias, Avrithis, Chum. MVA 2019. Graph-Based Particular Object Discovery.
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achievements and more challenges

• efficient manifold search

• manifold search as smoothing, space-time trade-off

• new retrieval benchmark

• local features emerge without training or altering the architecture

• consistent global and local representations

• suppressing background clutter, without supervision

• dataset-wide analysis improves image representation

• how to learn from minimal data or supervision?
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learning with less supervision

historically

• common (Neocognitron, BoW, layer-wise pre-training)

in deep learning

• the norm: lots of data, full supervision
• less data/supervision by:

• autoencoders, generative models
• transfer learning, domain adaptation
• proxy tasks: self-supervision, e.g. video, geometric layout, rotation,

instance discrimination
• incremental, few-shot, semi-supervised, weakly-supervised, noisy labels,

active learning
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category-level and instance-level tasks converge

• most elements common, e.g. architectures, loss functions,
representation learning

• main difference in data and labels, defining factors of variation to
which invariances need to be learned, e.g.

• category-level: within-class appearance variation
• instance-level: occlusion, clutter, viewpoint changes
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manifold learning

• classic methods are unsupervised

• do not learn an explicit mapping from input to embedding space

Lee and Verleysen. Springer, 2007. Nonlinear dimensionality reduction.
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metric learning

contrastive learning

• contrastive loss:
positive/negative pairs

• unsupervised manifold learning

• explicit nonlinear mapping
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supervised metric learning

• linear mapping

• positive/negative pairs defined
according to class labels

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.
Xing, Jordan, Russell and N. NIPS 2003. Distance Metric Learning with Application to Clustering with Side-Information.
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mining on manifolds (MoM)

• data points ( ), query point x ( )

•

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.
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mining on manifolds (MoM)

• data points ( ), query point x ( )

• hard negatives S− = E(x) \M(x) ( )

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



77/104

hard positive/negative examples

7

• query (anchor) (x)

• positives S+(x) vs. Euclidean neighbors E(x)

• negatives S−(x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.
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results
fine-grained categorization

Method Labels R@1 R@2 R@4 R@8 NMI

Baseline 35.0 46.8 59.3 72.0 48.1
Cyclic match 40.8 52.8 65.1 76.0 52.6
MoM (ours) 45.3 57.8 68.6 78.4 55.0

Triplet+semi-hard X 42.3 55.0 66.4 77.2 55.4
Lifted-structure X 43.6 56.6 68.6 79.6 56.5
Triplet+ X 45.9 57.7 69.6 79.8 58.1
Clustering X 48.2 61.4 71.8 81.9 59.2
Triplet+++ X 49.8 62.3 74.1 83.3 59.9

• CUB200-2011 dataset, 200 bird species, 100 training / 100 testing

• GoogLeNet pre-trained on ImageNet, then fine-tuned with triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.
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results
particular object retrieval

Method Hol Instre Oxf5k Oxf105k Par6k Par106k

Testing on MAC

Baseline 79.4 48.5 58.5 50.3 73.0 59.0
SfM 81.4 48.5 79.7 73.9 82.4 74.6
MoM (ours) 82.6 55.5 78.7 74.3 83.1 75.6

Testing on R-MAC

Baseline 87.0 55.6 68.0 61.0 76.6 72.1
SfM 84.4 47.7 77.8 70.1 84.1 76.8
MoM (ours) 87.5 57.7 78.2 72.6 85.1 78.0

• VGG-16 pre-trained on ImageNet, then fine-tuned with constrastive
loss on a 1M unlabeled dataset with MAC pooling

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.
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semi-supervised learning

• labeled points ( ), unlabeled points x ( )

• propagated labels ( ), certainty of prediction

Zhou, Bousquet, Lal, Weston, Schölkopf. NIPS2003. Learning with Local and Global Consistency.
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label propagation (transductive)
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common inductive approaches

y′i =

{
1 if i = argmaxi′ fi′(x)

0 otherwise

pseudo-labels

• treat predictions as ground truth

• dates back to the 60’s

3

θ θ’η

classification 
cost

consistency 
cost

3
prediction

label input

exponential 
moving 
average

student model teacher model

η’

3
prediction

consistency losses

• predictions of similar networks
on same input encouraged to be
similar

Lee. WCRL 2013. Pseudo-Label: the Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks.
Tarvainen and Valpola. NIPS 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results.
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deep label propagation (DLP) (inductive)

feature map
φθ

F
C

+
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ftm
a

x

classifier fθ

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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label
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Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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results
classification error

Dataset CIFAR-10 CIFAR-100 miniImageNet

# Labels 500 1,000 4,000 10,000 4,000 10,000

Supervised 49.08 40.03 55.43 40.67 53.07 38.28

DLP 32.40 22.02 46.20 38.43 47.58 36.14
MT 27.45 19.04 45.36 36.08 49.35 32.51
MT+DLP 24.02 16.93 43.73 35.92 50.52 31.99

• C13 on CIFAR-10/100, ResNet-18 on miniImageNet

• either DLP or MT+DLP works best

Tarvainen and Valpola. NIPS 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results.
Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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few-shot learning

metric learning

• learn to compare on base classes

• at inference: compare on novel
classes

Deep ConvNet

embedding
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weights

cosine similarity-based classifier

• features and class weight vectors
2-normalized

• standard cross-entropy loss on
base classes

Vinyals, Blundell, Lillicrap, Kavukcuoglu and Wierstra. NIPS 2016. Matching Networks for One-Shot Learning.
Qi, Brown and Lowe. CVPR 2018. Low-Shot Learning With Imprinted Weights.
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from tensors to vectors
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flattening global pooling

• flattening is very discriminative, but not invariant

• global spatial pooling (GAP) is invariant, but less discriminative

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.
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dense classification (DC)

φ(x) +
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φ(x)(r2) s σ `

φ(x)(r3) s σ `

class weights

• 1× 1 convolution followed by depth-wise softmax

• classifier encouraged to make correct predictions everywhere

• behaves like implicit data augmentation of exhaustive shifts and crops

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.
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dense classification (DC)

base classes novel classes

pooling dense pooling dense

• blue (red) is low (high) activation for ground truth

• smoother activation maps, more aligned with objects

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.
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results
5-way novel-class classification accuracy on miniImageNet

Method 1-shot 5-shot 10-shot

GAP 58.61±0.18 76.40±0.13 80.76±0.11

DC (ours) 62.53±0.19 78.95±0.13 82.66±0.11

DC + Wide 61.73±0.19 78.25±0.14 82.03±0.12

DC + IMP (ours) – 79.77±0.19 83.83±0.16

Gidaris et al. 55.45±0.70 73.00±0.60 –
ProtoNet 56.50±0.40 74.20±0.20 78.60±0.40

TADAM 58.50±0.30 76.70±0.30 80.80±0.30

• ResNet-12, following TADAM

• helps particularly on 1-shot

Gidaris and Komodakis. CVPR 2018. Dynamic Few-Shot Visual Learning Without Forgetting.
Oreshkin, Rodriguez, Lacoste. NIPS 2018. TADAM: Task dependent adaptive metric for improved few-shot learning.
Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.



91/104

achievements

• revival of unsupervised metric learning

• self-learning without conventional pipelines

• revival of transductive methods and pseudo-labels

• dataset-wide analysis iteratively improves image representation

• first study of local activations in few-shot learning

• training to convergence in few-shot learning

• advances on robustness of convolutional networks
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part IV

beyond
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smooth adversarial examples

original C&W sC&W

distortion 3.64 distortion 4.59

• force perturbation to be ‘smooth like’ the input image

• despite the extra constraint, the smooth attack performs better

Zhang, Avrithis, Furon and Amsaleg. JIS, in press. Smooth Adversarial Examples.
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boundary projection (BP) attack

x x

(a) PGD2 [16] (b) C&W [5]

x x

(c) DDN [25] (d) BP (this work) 
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• optimize distortion on class boundary, avoiding oscillations

• low-distortion adversarial examples at unprecedented speed

Zhang, Avrithis, Furon, Amsaleg. arXiv 2019. Walking on the Edge: Fast, Low-Distortion Adversarial Examples.
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deep active learning
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• use unlabeled data at model training, not just acquisition

• surprising improvement, compared to acquisition strategies

• random baseline beats other strategies in low-label regime

Siméoni, Budnik, Avrithis and Gravier. ICPR 2020. Rethinking Deep Active Learning: Using Unlabeled Data at Model Training.
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learning from few clean and many noisy labels
ECCV

#1060
ECCV

#1060

2.
Loss-clean + λ Loss-noisy

classify as 
negatives

classify as 
positives

1. djacency graph 
per class

3. elevance score output

1.00 1.00 0.01

0.92

0.01

Labeled example

Additional data

Class relevance prediction 
with GCN

Use for 
classifier 
training

0.97

0.970.90
0.05

0.80

Query by admiral

• large-scale unlabeled data: YFCC100M

• graph convolutional network discriminates clean from noisy data

Iscen, Tolias, Avrithis, Chum, Schmid. arXiv, 2019. Graph Convolutional Networks for Learning with Few Clean and Many Noisy
Labels.
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few-shot few-shot learning

• few-shot version of few-shot learning: base class examples are few

• representation learning on large-scale data of different domain

• spatial attention by off-the-shelf ResNet-18 (pre-tained on Places)

Lifchitz, Avrithis and Picard. arXiv 2020. Few-Shot Few-Shot Learning and the Role of Spatial Attention.
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nano-supervised object detection (NSOD)
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learning 
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C
N
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• few weakly-labeled and many unlabeled images

• trade off less supervision with more data

• work with unknown classes in the wild

Z. Yang, M. Shi, Y. Avrithis, C. Xu, V. Ferrari. arXiv 2019. Training Object Detectors from Few Weakly-Labeled and Many
Unlabeled Images.
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asymmetric metric learning (AML)
, , : anchor, positive, negative (student). , , : anchor, positive, negative (teacher).

fθ: student (with parameters θ). g: teacher (fixed). , : distance measurements.
, : attraction, repulsion (mutual). , : attraction, repulsion (unilateral).

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

(a) symmetric (b) regression (c) relational (d) asymmetric (this work)

• combine supervised metric learning and knowledge transfer

• compatible with any pair-based loss function

• EfficientNet-B3 student outperforms ResNet-101 teacher on RevOP

Budnik and Avrithis. arXiv 2020. Asymmetric Metric Learning for Knowledge Transfer.
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take home message

exploring data and learning the representation
are mutually beneficial
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outline – part IV

15 current work

16 outlook
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motivation

• computing power still incomparable to biological visual systems

• amount and quality of data still incomparable to what is seen by
humans

• human visual long-term memory has a massive capacity

• current architectures are typically stateless

Brady, Konkle, Alvarez and Oliva. PNAS 2018. Visual long-term memory has a massive storage capacity for object details.
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data as a first-class citizen in visual recognition

• data becomes explicit part of model than just its training process

• translate more storage capacity to better performance

• long term goal: artificial visual long-term memory



98/104

data as a first-class citizen in visual recognition

• data becomes explicit part of model than just its training process

• translate more storage capacity to better performance

• long term goal: artificial visual long-term memory



99/104

rethinking metric learning

• unify tasks and loss functions

• study all supervision settings that are common in classification

• apply loss functions globally on the entire dataset

• extend to detection and instance segmentation

Hadsell, Chopra and LeCun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.
Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning Without Labels.
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category-level semantic alignment

Correlation
Layer

Fusion
Layer

𝑐 × ℎ × 𝑤
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ത𝑃𝑏
𝑘

ത𝑄𝑘
𝑏

𝑚 × ℎ × 𝑤

ℎ × 𝑤

• classes represented by tensors

• end-to-end learning using geometric alignment

• answer the invariance vs. discriminative power dilemma

• encourage sparse representations at inference

Hou, Chang, Ma, Shan and Chen. arXiv 2019. Cross Attention Network for Few-shot Classification.
Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.
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manifolds, indexing, and geometry

• scale up manifold search to billions

• use geometry: extend pairwise affinity from vectors to tensors

• extend to graph convolutional networks

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds- Recovering Small Objects with
Compact CNN Representations.
Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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learning while memorizing

Memory

New
samples

Construction of 
the training set

Training process Balanced 
fine-tuning

Representative 
memory updating

• category-level tasks: a “summary” of training set explicitly memorized

• instance-level tasks: training and test sets become part of a
continuously growing knowledge

• memory-based few-shot learning

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.
Iscen, Tolias, Avrithis, Chum, and Schmid. arXiv 2019. Graph convolutional networks for learning with few clean and many noisy
labels.
Castro, Marin-Jimenez, Guil, Schmid and Alahari. ECCV 2018. End-to-End Incremental Learning.
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on-manifold adversarial robustness

(a)
regular
adversarial example

(b)
on-manifold
adversarial example

(c)
invalid
adversarial example

Class Manifold “5”

Class Manifold “6”

True
Decision
Boundary

Classifier’s
Decision
Boundary

• adversarial defenses: “ultimate form” of regularization

• hurt on clean data, unless constrained on the manifold (?)

• generalize beyond smoothness and beyond classification

• model the manifold using true data

Stutz, Hein and Schiele. CVPR 2018. Disentangling Adversarial Robustness and Generalization.
Zhang, Avrithis, Furon and Amsaleg. JIS, in press. Smooth Adversarial Examples.
Zhang, Avrithis, Furon, Amsaleg. arXiv 2019. Walking on the Edge: Fast, Low-Distortion Adversarial Examples.
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thank you!

https://avrithis.net

https://avrithis.net

	about me
	orientation
	exploring
	context
	visual vocabularies
	spatial matching
	beyond vocabularies
	exploring photo collections

	exploring deeper
	context
	searching on manifolds
	spatial matching
	discovering objects

	learning
	context
	metric learning
	semi-supervised learning
	few-shot learning

	beyond
	current work
	outlook


