Exploring and Learning from Visual Data Habilitation à Diriger des Recherches

Yannis Avrithis

Inria Rennes-Bretagne Atlantique
Rennes, July 2020

> Jury

Patrick Pérez - valeo.ai
Gabriela Csurka Khedari - Naver Labs Jiri Matas - CTU Prague
Cordelia Schmid - Inria

Horst Bischof - TU Graz
Rémi Gribonval - Inria
Nikos Paragios - CentraleSupélec
Eric Marchand - UR1

6) IRISA

students and collaborators

Laurent Amsaleg

Ioannis Emiris

Mateusz Budnik

Teddy Furon

Andrei Bursuc

Guillaume Gravier

Ondrej Chum

Ahmet Iscen

students and collaborators

Hervé Jégou

Kimon Kontosis

Frédéric Jurie

Yann Lifchitz

Yannis Kalantidis

Marios Phinikettos

Ewa Kijak

Sylvaine Picard

students and collaborators

Filip Radenović

Oriane Siméoni

Kostas Rapantzikos

Giorgos Tolias

Miaojing Shi

Christos Varytimidis

Ronan Sicre

Hanwei Zhang

instance-level tasks

instance-level tasks

- scale
- viewpoint
- occlusion
- background clutter
- lighting

instance-level tasks

- scale
- viewpoint
- occlusion
- background clutter
- lighting

category-level tasks

category-level tasks

- scale
- viewpoint
- occlusion
- background clutter
- lighting

category-level tasks

- scale
- viewpoint
- occlusion
- background clutter
- lighting
- number of instances
- texture/color
- pose
- deformability
- intra-class variability

part I: exploring

- instance-level visual matching, search and clustering
- shallow visual representations and matching processes
- local features, hand-crafted descriptors and visual vocabularies

part I: exploring

- instance-level visual matching, search and clustering
- shallow visual representations and matching processes
- local features, hand-crafted descriptors and visual vocabularies

visual vocabularies

spatial matching

part I: exploring

- instance-level visual matching, search and clustering
- shallow visual representations and matching processes
- local features, hand-crafted descriptors and visual vocabularies

part I: exploring

- instance-level visual matching, search and clustering
- shallow visual representations and matching processes
- local features, hand-crafted descriptors and visual vocabularies

visual vocabularies

beyond vocabularies

community photos

part II: exploring deeper

- instance-level visual matching, search and object discovery
- deep visual representations and matching processes
- parametric models learned from visual data
- focus on the manifold structure of the feature space

part II: exploring deeper

- instance-level visual matching, search and object discovery
- deep visual representations and matching processes
- parametric models learned from visual data
- focus on the manifold structure of the feature space

manifold search

part II: exploring deeper

- instance-level visual matching, search and object discovery
- deep visual representations and matching processes
- parametric models learned from visual data
- focus on the manifold structure of the feature space

manifold search

spatial matching

part II: exploring deeper

- instance-level visual matching, search and object discovery
- deep visual representations and matching processes
- parametric models learned from visual data
- focus on the manifold structure of the feature space

manifold search

spatial matching

object discovery

part III: learning

- learning deep visual representations by exploring visual data
- focus limited or no supervision
- progress from instance-level to category-level tasks

part III: learning

- learning deep visual representations by exploring visual data
- focus limited or no supervision
- progress from instance-level to category-level tasks

unsupervised metric learning

semi-supervised learning

part III: learning

- learning deep visual representations by exploring visual data
- focus limited or no supervision
- progress from instance-level to category-level tasks

unsupervised metric learning
semi-supervised learning

few-shot learning

part IV: beyond

reflection

- current work
- take home message

outlook

- a vision
- research directions

part I

exploring

outline - part I

(2) context
(3) visual vocabularies
(4) spatial matching
(5) beyond vocabularies

6 exploring photo collections

scale-invariant feature transform (SIFT)

visual recognition works under occlusion, lighting and viewpoint changes
local feature detection by DoG
descriptor as histogram
of gradient orientation
localization by
Hough transform

scale-invariant feature transform (SIFT)

visual recognition works under occlusion, lighting and viewpoint changes

Lindeberg. IJCV 1998. Feature Detection with Automatic Scale Selection. Lowe. ICCV 1999. Object recognition from local scale-invariant features.

scale-invariant feature transform (SIFT)

visual recognition works under occlusion, lighting and viewpoint changes

local feature detection by DoG

descriptor as histogram of gradient orientation
localization by
Hough transform

Daugman. VR 1980. Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles.
Lowe. ICCV 1999. Object recognition from local scale-invariant features.

scale-invariant feature transform (SIFT)

visual recognition works under occlusion, lighting and viewpoint changes

local feature detection by DoG

descriptor as histogram of gradient orientation

localization by Hough transform

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.
Lowe. ICCV 1999. Object recognition from local scale-invariant features.

bag of words (BoW)

instance-level

- clusters of SIFT descriptors
- images described by visual word histograms
- text retrieval, e.g. TF-IDF, inverted files

bag of words (BoW)

instance-level

- clusters of SIFT descriptors
- images described by visual word histograms
- text retrieval, e.g. TF-IDF, inverted files

category-level
- naïve Bayes or SVM classifier
- features soon to be replaced by dense

challenges

- thousands of local features per image
- vocabularies may need to be very large
- bag-of-words invariant but not discriminative
- spatial matching does not scale well
- quantization hurts
- burstiness of visual elements hurts
- need for efficient nearest neighbor search
- datasets are redundant

outline - part I

(2) context

(3) visual vocabularies

4 spatial matching
(5) beyond vocabularies
(6) exploring photo collections

vocabulary size

classification
 - thousands

vocabulary size

classification

- thousands

instance-level retrieval
 - millions

Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.

problems

- with $k=10^{6}$ visual words and $n=10^{7}$ descriptors, vocabulary learning is very expensive: only variants of k-means
- for each value of k tested, one needs to not only learn the vocabulary, but also re-index a very large image collection

beyond k-means

approximate k-means (AKM)

- centroids updated as in k-means
- points assigned to centroids by randomized k-d trees
approximate Gaussian mixtures (AGM)
- keen nearest neighbors between iterations and use them to model a Gaussian mixture
- dynamically estimate k by purging overlapping components

beyond k-means

approximate k-means (AKM)

- centroids updated as in k-means
- points assigned to centroids by randomized k-d trees

approximate Gaussian mixtures (AGM)

- keep nearest neighbors between iterations and use them to model a Gaussian mixture
- dynamically estimate k by purging overlapping components

approximate Gaussian mixtures

iteration 0: 50 clusters

approximate Gaussian mixtures

iteration 1: 15 clusters

approximate Gaussian mixtures

approximate Gaussian mixtures

results

image search: mAP on Oxford5k

Method	RAKM					AKM	AGM
k	350 k	500 k	550 k	600 k	700 k	550 k	857 k
5 k	0.471	0.479	0.486	0.485	0.476	0.485	0.492
$5 \mathrm{k}+20 \mathrm{k}$	0.439	0.440	0.448	0.441	0.437	0.447	0.459
$5 \mathrm{k}+1 \mathrm{M}$	-	-	0.250	-	-	-	0.280

- RAKM roughly equivalent to AKM, only faster
- AGM superior, with $k=857 \mathrm{k}$ automatically inferred in a single run

outline - part I

(2) context

(3) visual vocabularies
(4) spatial matching
(5) beyond vocabularies
(6) exploring photo collections

robust matching

Hough transform

- detect patterns by a voting process in parameter space

robust matching

Hough transform

- detect patterns by a voting process in parameter space

random sample consensus (RANSAC)

- iteratively generate hypotheses at random, fit model, and verify hypotheses by counting inliers

using local shape

a single correspondence of SIFT features yields a 4-dof transformation

Lowe

- hypotheses: sparse Hough voting in 4-dimensional space
- verification: find inliers for bins with at least 3 votes

using local shape

a single correspondence of SIFT features yields a 4-dof transformation

Lowe

- hypotheses: sparse Hough voting in 4-dimensional space
- verification: find inliers for bins with at least 3 votes

fast spatial matching (FSM)

- 3,4 or 5-dof transformation
- RANSAC with one hypothesis per correspondence

using local shape

a single correspondence of SIFT features yields a 4-dof transformation

Lowe

- hypotheses: sparse Hough voting in 4-dimensional space
- verification: find inliers for bins with at least 3 votes

fast spatial matching (FSM)

- 3,4 or 5-dof transformation
- RANSAC with one hypothesis per correspondence
both are quadratic in the number of correspondences

Hough pyramid matching (HPM)

fast spatial matching

- robust to deformation, multiple surfaces, invariant to transformations
- linear in the number of correspondences; no need to count inliers

Hough pyramid matching (HPM)

Hough pyramid matching

- robust to deformation, multiple surfaces, invariant to transformations
- linear in the number of correspondences; no need to count inliers

performance vs. time

image search on World Cities 2M

- more than 10 times faster, more accurate

outline - part I

(2) context

(3) visual vocabularies
(4) spatial matching
(5) beyond vocabularies
(6) exploring photo collections

pairwise matching vs. aggregation

Hamming embedding (HE)

- large vocabulary
- matching of binary signatures
- selective: discard weak votes

pairwise matching vs. aggregation

Hamming embedding (HE)

- large vocabulary
- matching of binary signatures
- selective: discard weak votes

vector of locally aggregated descriptors (VLAD)
- small vocabulary
- one aggregated vector per cell
- not selective

aggregated selective match kernel (ASMK)

- borrow from HE the idea that descriptor pairs are selected by a nonlinear function

$$
K_{\mathrm{HE}}(X, Y):=\sum_{x \in X} \sum_{y \in Y} \mathbb{1}\left[d_{\mathrm{H}}(b(x), b(y)) \leq \tau\right]
$$

- borrow from VLAD the idea that residuals are aggregated per cell

- combine aggregation within cells with selectivity between cells

where $\hat{x}:=x /\|x\|$ and σ_{α} a nonlinear selectivity function

aggregated selective match kernel (ASMK)

- borrow from HE the idea that descriptor pairs are selected by a nonlinear function

$$
K_{\mathrm{HE}}(X, Y):=\sum_{x \in X} \sum_{y \in Y} \mathbb{1}\left[d_{\mathrm{H}}(b(x), b(y)) \leq \tau\right]
$$

- borrow from VLAD the idea that residuals are aggregated per cell

$$
K_{\mathrm{VLAD}}(X, Y):=V(X)^{\top} V(Y)=\sum_{x \in X} \sum_{y \in Y} r(x)^{\top} r(y)
$$

- combine aggregation within cells with selectivity between cells
where $\hat{x}:=x /\|x\|$ and σ_{α} a nonlinear selectivity function

aggregated selective match kernel (ASMK)

- borrow from HE the idea that descriptor pairs are selected by a nonlinear function

$$
K_{\mathrm{HE}}(X, Y):=\sum_{x \in X} \sum_{y \in Y} \mathbb{1}\left[d_{\mathbf{H}}(b(x), b(y)) \leq \tau\right]
$$

- borrow from VLAD the idea that residuals are aggregated per cell

$$
K_{\mathrm{VLAD}}(X, Y):=V(X)^{\top} V(Y)=\sum_{x \in X} \sum_{y \in Y} r(x)^{\top} r(y)
$$

- combine aggregation within cells with selectivity between cells

$$
K_{\mathrm{ASMK}}(X, Y):=\sigma_{\alpha}\left(\hat{V}(X)^{\top} \hat{V}(Y)\right)
$$

where $\hat{x}:=x /\|x\|$ and σ_{α} a nonlinear selectivity function

impact of selectivity

$\alpha=3, \tau=0.0$

$$
\alpha=3, \tau=0.25
$$

correspondences weighed based on confidence

impact of aggregation and burstiness

$k=65 \mathbf{k}$ as in HE

results

image search: mAP

Dataset	MA	Oxf5k	Oxf105k	Par6k	Holiday
ASMK*		76.4	69.2	74.4	80.0
ASMK*	\checkmark	80.4	75.0	77.0	81.0
ASMK		78.1	-	76.0	81.2
ASMK	\checkmark	81.7	-	78.2	82.2
HE [Jégou et al. '10]		51.7	-	-	74.5
HE [Jégou et al. '10]	\checkmark	56.1	-	-	77.5
HE-BURST [Jain et al. '10]		64.5	-	-	78.0
HE-BURST [Jain et al. '10]	\checkmark	67.4	-	-	79.6
Fine vocab. [Mikulík et al. '10]	\checkmark	74.2	67.4	74.9	74.9

- last state of the art before deep learning
- still state of the art on CNN features

locally optimized product quantization

- builds on PQ, searching fast in the compressed domain
- better captures the support of data distribution
- state of the art at billion scale for years
- deployed on entire Flickr collection

outline - part I

(2) context

(3) visual vocabularies
(4) spatial matching
(5) beyond vocabularies
(6) exploring photo collections

community photo collections

- applications: browsing, 3D reconstruction, location/landmark recognition
- focus on popular subsets like landmarks and points of interest

view clustering

- geo clustering: according to geographic location
- visual clustering: according to visual similarity (inliers)

both landmark and non-landmark
irnages

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view clustering

- geo clustering: according to geographic location
- visual clustering: according to visual similarity (inliers)

- both landmark and non-landmark images

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

scene map construction

before feature clustering

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

scene map construction

after feature clustering

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

results

 image search on European Cities 1M

 image search on European Cities 1M}

Method	Time	mAP
Baseline BoW	1.03 s	0.642
QE $_{1}$	20.30 s	0.813
QE $_{2}$	2.51 s	0.686
Scene maps	1.29 s	0.824

- QE_{1} : iterative query expansion, re-query using the retrieved images and merge, 3 times iteratively
- QE_{2} : create scene map using the initial results and re-query once
- scene maps: similar to QE_{1} but as fast as baseline

Chum, Philbin, Sivic, Isard and Zisserman. ICCV 2007. Total Recall: Automatic Query Expansion With a Generative Feature Model for Object Retrieval.
Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo Collections.

http://viral.image.ntua.gr online since 2008

query

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.

results

TEstimated Locsation 9 Similar Image， $\bar{\gamma}$ Incorrectly geotagged 9 Unavailable

Suggested tags：Buicon Memorial Fountain，Victoria Tower Gardens，London Frequent user tags：Victoria Tower Gardens，Buxton Memorial Fountain，MWinchester Palace， Architecture Victonan gothic

Similar Images

Similarity： 0.619
Tetails Original ee

Similarity： 0.491

Similarity： 0.385

Kalantidis，Tolias，Avrithis，Phinikettos，Spyrou，Mylonas and Kollias．MTAP 2011．VIRaL：Visual Image Retrieval and Localization．
4ロ〉4回〉（
三 \quad

suggested tags

Suggested tags：Buxton Memorial Fountain，Victoria Tower Gardens，London Frequent user tags：Victoria Tower Gardens，Buxton Memorial Fountain，Winchester Palace， Architecture，Victorian gothic

related wikipedia articles

WikipediA
The Free Encyclopedia

Main page

Contents
Featured content
Current events Random article Donate
－Interaction About Wikipedia Community portal Recent changes Contact Wíkipedia Help
－Toolbox
What links here
Related changes Upload file Special pages Permanent link cite this page
－Printiexport

Victoria Tower Gardens

From Wikipedia，the free encyclopedia
Coordinctes：51＂2949．0＂N0⒎30．0＂M
Victoria Tower Gardens is a public park along the north bank of the River Thames in London．As its name suggests，it is adjacent to the Victoria Tower，the south－western corner of the Palace of Westminster．The park，which extends southwards from the Palace to Lambeth Bridge，sandwiched between Millbank and the river，also forms part of the Thames Embankment．

```
Contents[hide]
1 Features
2 Transport
3 History
4 External links
5 References
```


Features

Victoria Tower Gardens，2005，with the Buxton b－ Memoria Fountain at the front and the Palace of Westmirster in the background

The park features：
－A reproduction of the sculpture The Burghers of Calais by Auguste Rodin，purchased by the British Government in 1911 and positioned in the Gardens in 1915
－A 1930 statue of the suffragette Emmeline Pankhurst，by A．G．Walker．
－The Euxton Memorial Fountain－originally constructed in Parliament Square，this was removed in 1940 and placed in its present position in 1957．It was commissioned by Charles Buxton MP to commemorate the emancipation of slaves in 1834，dedicated to his father Thomas Fowell Buxton，and designed by Gothic architect Samuel Sanders Teulon （1812－1873）in $18 \overline{6} 5$.
－A stone wall with two modern－style goats with kids－situated at the southem end of the Gardens
Transport

VIRaL Explore

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.

VIRaL Explore

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.

VIRaL Routes

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.

achievements

- one-off construction of vocabularies
- fast and more accurate spatial matching
- beyond BoW: approximate descriptors, fighting burstiness
- nearest neighbor search in compressed domain
- dataset-wide analysis improves image representation
- widespread dissemination of novel applications
either high quality or compact representation

achievements and more challenges

- one-off construction of vocabularies
- fast and more accurate spatial matching
- beyond BoW: approximate descriptors, fighting burstiness
- nearest neighbor search in compressed domain
- dataset-wide analysis improves image representation
- widespread dissemination of novel applications
- either high quality or compact representation
part II

exploring deeper

outline - part II

(7) context
(8) searching on manifolds
(9) spatial matching
(10) discovering objects

AlexNet

learning visual representations from raw data works at scale

CNN, SGD
backprop

AlexNet

learning visual representations from raw data works at scale

CNN, SGD backprop

AlexNet

learning visual representations from raw data works at scale

CNN, SGD backprop

ImageNet
(1.2M images)
graphics processing
units (GPU)
rectified linear
unit (ReLU)

AlexNet

learning visual representations from raw data works at scale

CNN, SGD backprop

ImageNet
(1.2M images)

graphics processing units (GPU)

AlexNet

learning visual representations from raw data works at scale

CNN, SGD backprop

ImageNet
(1.2M images)

graphics processing units (GPU)

rectified linear unit (ReLU)

instance-level tasks

regional CNN features

- jump more than 30% mAP in few months
- outperform SIFT pipeline

instance-level tasks

regional CNN features

- jump more than $30 \% \mathrm{mAP}$ in few months
- outperform SIFT pipeline

self-supervision

- max-pooling (MAC/R-MAC), generalized mean (GeM)
- SfM pipeline based on SIFT, BoW and RANSAC

opportunities and challenges

- powerful global representation
- feature space still exhibits manifold structure
- graph-based methods now feasible but still do not scale well
- regional or local information often overlooked
- richness of convolutional activations not well understood
- dataset-wide analysis often missing in favor of stochastic updates

outline－part II

（7）context
（8）searching on manifolds
（9）spatial matching
（10）discovering objects

4ロ〉4占〉4 ミ〉

graph-based methods

now that a high-quality representation is possible with just one or few vectors per image, graph-based methods are more relevant than ever

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 0×30

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 1×30

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 2×30

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 3×30

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (\bullet)
- iteration 4×30

ranking on manifolds (diffusion)

- data points ($\left(\right.$), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 5×30

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 6×30

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 7×30

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 8×30

ranking on manifolds (diffusion)

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 9×30

ranking on manifolds (diffusion)

- random walk with restart (RWR)

$$
\mathbf{f}^{(\tau)}:=\alpha \mathcal{W} \mathbf{f}^{(\tau-1)}+(1-\alpha) \mathbf{y}
$$

where \mathbf{y} : query vector, \mathcal{W} : adjacency matrix, \mathbf{f} : ranking vector apply to regional CNN features
solve linear system

$$
\mathcal{L}_{\alpha} \mathbf{f}=\mathbf{y}
$$

by conjugate gradient (CG) method, where regularized Laplacian

ranking on manifolds (diffusion)

- random walk with restart (RWR)

$$
\mathbf{f}^{(\tau)}:=\alpha \mathcal{W} \mathbf{f}^{(\tau-1)}+(1-\alpha) \mathbf{y}
$$

where \mathbf{y} : query vector, \mathcal{W} : adjacency matrix, \mathbf{f} : ranking vector

- apply to regional CNN features
- solve linear system

$$
\mathcal{L}_{\alpha} \mathbf{f}=\mathbf{y}
$$

by conjugate gradient (CG) method, where regularized Laplacian

$$
\mathcal{L}_{\alpha}:=\frac{I-\alpha \mathcal{W}}{1-\alpha}
$$

CG vs. RWR

image search with regional VGG features $(d=512)$

fast spectral ranking (FSR)

- low-pass filtering in the frequency domain
- or, "soft" dimensionality reduction

results

mAP using ResNet-101 features $(d=2,048)$

Method	m	Instre	Oxf5k	Oxf105k	Par6k	Par106k
Regional						Features:

- helps particularly on Instre, which contains small objects on background clutter
- FSR (rank $r=5 \mathrm{k}$) has same performance as CG, is two orders of magnitude faster, needs $3 \times$ space

hard examples?

- red: drift
- blue: incorrect annotations

Oxford and Paris revisited (RevOP)

fixed annotation errors

1 million hard distractors

new queries

outline - part II

(7) context
(8) searching on manifolds
(9) spatial matching
(10) discovering objects

revival of local features

learned invariant feature transform (LIFT)

- learned SIFT: detection, orientation estimation, descriptor extraction
- trained on patch-level labels

revival of local features

learned invariant feature transform (LIFT)

- learned SIFT: detection, orientation estimation, descriptor extraction
- trained on patch-level labels

deep local features (DELF)

- self-attention to detect keypoints
- trained on image-level labels

motivation

map 2

- different local features present in each feature map (channel)

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.

motivation

deep spatial matching (DSM)

- local features detected by MSER independently per channel
- inliers found by fast spatial matching

deep spatial matching (DSM)

input image

local features

inliers

- local features detected by MSER independently per channel
- inliers found by fast spatial matching

Dhilhin, Chum, Isard Sivie and Zissorman. CVPD 2007 . Obiect Petrieval W/ith Large Vocabularies and Fast Spatial Matching.
Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.

deep spatial matching (DSM)

- local features detected by MSER independently per channel

- inliers found by fast spatial matching

deep spatial matching (DSM)

- local features detected by MSER independently per channel
- inliers found by fast spatial matching

example

- local maxima on each activation channel are "local features"
- channels are "visual words" - no vocabulary needed

example

- local maxima on each activation channel are "local features"
- channels are "visual words" - no vocabulary needed

results

mAP on RevOP using diffusion

Method	Medium		Hard	
	$\mathcal{R} 0 \times f$	$+\mathcal{R} 1 \mathrm{M}$	\mathcal{R} Par	$+\mathcal{R} 1 \mathrm{M}$
V-MAC \star	67.7	56.8	39.8	29.4
V-MAC $\star+$ DSM	72.0	59.2	43.9	32.0
R-MAC \uparrow	73.9	61.3	45.6	31.9
R-MAC $\uparrow+$ DSM	76.9	65.7	49.4	35.7
V-GeM	69.6	60.4	41.1	33.1
V-GeM+DSM	72.8	63.2	45.4	35.4
R-GeM \uparrow	70.1	67.5	41.5	39.6
R-GeM $\uparrow+$ DSM	75.0	70.2	46.2	41.9

- V: VGG-16, R: ResNet-101
- MAC: max-pooling, GeM: generalized mean pooling

outline - part II

(7) context
(8) searching on manifolds
(9) spatial matching
(10) discovering objects

from attention to detection

object proposals

- class-agnostic objectness measure
- essential component of modern two-stage object detectors

from attention to detection

object proposals

- class-agnostic objectness measure
- essential component of modern two-stage object detectors

unsupervised object discovery

- segmentation-based ROIs
- rank by link analysis on entire dataset (PageRank)

feature saliency (FS) map

- sparsity-sensitive channel weights on convolutional activations

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

region detection with EGM

- EGM generalized from points to 2d functions (images)

object saliency (OS) map

image

- centrality extended to unseen image patches by non-parametric regression

object saliency (OS) map

image

- centrality extended to unseen image patches by non-parametric regression

object saliency (OS) map

- centrality extended to unseen image patches by non-parametric regression

object saliency (OS) map

- centrality extended to unseen image patches by non-parametric regression

object saliency (OS) map

- centrality extended to unseen image patches by non-parametric regression

object saliency (OS) map

- centrality extended to unseen image patches by non-parametric regression

FS vs. OS

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.

results

mAP on Instre and RevOP using global features

Method	Medium			Hard	
	Instre	$\mathcal{R O}$ ㅈf	$\mathcal{R P a r}$	$\mathcal{R} O \times f$	$\mathcal{R P a r}$
GeM	57.0	62.0	69.3	33.7	44.3
FS.EGM	57.7	63.0	68.7	34.5	43.9
OS.EGM	61.3	64.2	69.9	35.9	46.1

- global features, pooled from FS/OS regions
- helps particularly on Instre, which contains small objects on background clutter

achievements

- efficient manifold search
- manifold search as smoothing, space-time trade-off
- new retrieval benchmark
- local features emerge without training or altering the architecture
- consistent global and local representations
- suppressing background clutter, without supervision
- dataset-wide analysis improves image representation
- how to learn from minimal data or supervision?

achievements and more challenges

- efficient manifold search
- manifold search as smoothing, space-time trade-off
- new retrieval benchmark
- local features emerge without training or altering the architecture
- consistent global and local representations
- suppressing background clutter, without supervision
- dataset-wide analysis improves image representation
- how to learn from minimal data or supervision?
part III

learning

outline - part III

(11) context
(12) metric learning
(13) semi-supervised learning
(14) few-shot learning

learning with less supervision

historically

- common (Neocognitron, BoW, layer-wise pre-training)
in deep learning
- the norm: lots of data, full supervision
- less data/supervision by:
- autoencoders, generative models
- transfer learning, domain adaptation
- proxy tasks: self-supervision, e.g. video, geometric layout, rotation,
instance discrimination
- incremental, few-shot, semi-supervised, weakly-supervised, noisy labels, active learning

learning with less supervision

historically

- common (Neocognitron, BoW, layer-wise pre-training)

in deep learning

- the norm: lots of data, full supervision
- less data/supervision by:
- autoencoders, generative models
- transfer learning, domain adaptation
- proxy tasks: self-supervision, e.g. video, geometric layout, rotation, instance discrimination
- incremental, few-shot, semi-supervised, weakly-supervised, noisy labels, active learning

category-level and instance-level tasks converge

- most elements common, e.g. architectures, loss functions, representation learning
- main difference in data and labels, defining factors of variation to which invariances need to be learned, e.g.
- category-level: within-class appearance variation
- instance-level: occlusion, clutter, viewpoint changes

outline - part III

(11) context
(12) metric learning
(13) semi-supervised learning
(14) few-shot learning

manifold learning

- classic methods are unsupervised
- do not learn an explicit mapping from input to embedding space

metric learning

contrastive learning

- contrastive loss: positive/negative pairs
- unsupervised manifold learning
- explicit nonlinear mapping

metric learning

contrastive learning

- contrastive loss: positive/negative pairs
- unsupervised manifold learning
- explicit nonlinear mapping
supervised metric learning
- linear mapping
- positive/negative pairs defined according to class labels

mining on manifolds (MoM)

- data points (\cdot), query point $\mathbf{x}(\cdot)$

mining on manifolds (MoM)

- data points (\odot), query point $\mathbf{x}(\cdot)$
- Euclidean nearest neighbors $E(\mathbf{x})(\circ)$

mining on manifolds (MoM)

- data points (\circ), query point $\mathbf{x}(\bullet)$
- manifold nearest neighbors $M(\mathbf{x})(\odot)$

mining on manifolds (MoM)

- data points (\cdot), query point $\mathbf{x}(\bullet)$
- hard positives $S^{+}=M(\mathbf{x}) \backslash E(\mathbf{x})(\odot)$

mining on manifolds (MoM)

- data points (\cdot), query point $\mathbf{x}(\bullet)$
- hard negatives $S^{-}=E(\mathbf{x}) \backslash M(\mathbf{x})(\bullet)$

hard positive/negative examples

- query (anchor) (x)
- positives $S^{+}(\mathrm{x})$
- negatives $S^{-}(\mathrm{x})$

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.

hard positive/negative examples

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathrm{x})$
- negatives $S^{-}(\mathrm{x})$

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.

hard positive/negative examples

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$

[^0]Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.

hard positive/negative examples

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^{-}(\mathbf{x})$ vs. Euclidean non-neighbors $X \backslash E(\mathrm{x})$

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.

hard positive/negative examples

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.

results

fine-grained categorization

Method	Labels	R@1	R@2	R@4	R@8	NMI
Baseline		35.0	46.8	59.3	72.0	48.1
Cyclic match		40.8	52.8	65.1	76.0	52.6
MoM (ours)		45.3	57.8	68.6	78.4	55.0
Triplet+semi-hard	\checkmark	42.3	55.0	66.4	77.2	55.4
Lifted-structure	\checkmark	43.6	56.6	68.6	79.6	56.5
Triplet+	\checkmark	45.9	57.7	69.6	79.8	58.1
Clustering	\checkmark	48.2	61.4	71.8	81.9	59.2
Triplet+++	\checkmark	49.8	62.3	74.1	83.3	59.9

- CUB200-2011 dataset, 200 bird species, 100 training / 100 testing
- GoogLeNet pre-trained on ImageNet, then fine-tuned with triplet loss

results

particular object retrieval

Method	Hol	Instre	Oxf5k	Oxf105k	Par6k	Par106k
Testing on MAC						
Baseline	79.4	48.5	58.5	50.3	73.0	59.0
SfM	81.4	48.5	79.7	73.9	82.4	74.6
MoM (ours)	82.6	55.5	78.7	74.3	83.1	75.6
Testing on R-MAC						
Baseline	87.0	55.6	68.0	61.0	76.6	72.1
SfM	84.4	47.7	77.8	70.1	84.1	76.8
MoM (ours)	87.5	57.7	78.2	72.6	85.1	78.0

- VGG-16 pre-trained on ImageNet, then fine-tuned with constrastive loss on a 1 M unlabeled dataset with MAC pooling

outline－part III

（11）context
（12）metric learning
（13）semi－supervised learning
（14）few－shot learning

semi-supervised learning

- labeled points $(\mathbf{\Delta})$, unlabeled points $\mathrm{x}(\mathrm{O})$
- propagated labels (o)

semi-supervised learning

- labeled points (Δ), unlabeled points $x(o)$
- propagated labels (o)

label propagation (transductive)

- labeled points (Δ), unlabeled points $\mathrm{x}(\mathrm{O})$
- propagated labels (o) certainty of prediction

label propagation (transductive)

- labeled points (Δ), unlabeled points $x(0)$
- propagated labels (○), certainty of prediction

common inductive approaches

$$
y_{i}^{\prime}= \begin{cases}1 & \text { if } i=\operatorname{argmax}_{i^{\prime}} f_{i^{\prime}}(x) \\ 0 & \text { otherwise }\end{cases}
$$

pseudo-labels

- treat predictions as ground truth
- dates back to the 60's

common inductive approaches

$$
y_{i}^{\prime}= \begin{cases}1 & \text { if } i=\operatorname{argmax}_{i^{\prime}} f_{i^{\prime}}(x) \\ 0 & \text { otherwise }\end{cases}
$$

pseudo-labels

- treat predictions as ground truth
- dates back to the 60's

consistency losses

- predictions of similar networks on same input encouraged to be similar

Lee. WCRL 2013. Pseudo-Label: the Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. Tarvainen and Valpola. NIPS 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results.

deep label propagation (DLP) (inductive)

classifier f_{θ}

deep label propagation (DLP) (inductive)

classifier f_{θ}

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.

deep label propagation (DLP) (inductive)

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.

deep label propagation (DLP) (inductive)

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.

deep label propagation (DLP) (inductive)

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.

deep label propagation (DLP) (inductive)

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.

deep label propagation (DLP) (inductive)

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.

results

classification error

Dataset	CIFAR-10		CIFAR-100		minilmageNet	
\# Labels	500	1,000	4,000	10,000	4,000	10,000
Supervised	49.08	40.03	55.43	40.67	53.07	38.28
DLP	32.40	22.02	46.20	38.43	47.58	36.14
MT	27.45	19.04	45.36	36.08	49.35	32.51
MT+DLP	24.02	16.93	43.73	35.92	50.52	31.99

- C13 on CIFAR-10/100, ResNet-18 on minilmageNet
- either DLP or MT+DLP works best

outline - part III

(11) context
(12) metric learning
(13) semi-supervised learning
(14) few-shot learning

few-shot learning

metric learning

- learn to compare on base classes
- at inference: compare on novel classes

few-shot learning

metric learning

- learn to compare on base classes
- at inference: compare on novel classes

cosine similarity-based classifier

- features and class weight vectors 2-normalized
- standard cross-entropy loss on base classes

from tensors to vectors

- flattening is very discriminative, but not invariant
- global spatial pooling (GAP) is invariant, but less discriminative

from tensors to vectors

- flattening is very discriminative, but not invariant
- global spatial pooling (GAP) is invariant, but less discriminative

dense classification (DC)

- 1×1 convolution followed by depth-wise softmax
- classifier encouraged to make correct predictions everywhere

dense classification (DC)

- 1×1 convolution followed by depth-wise softmax
- classifier encouraged to make correct predictions everywhere
- behaves like implicit data augmentation of exhaustive shifts and crops

dense classification (DC)

base classes

pooling

dense

- blue (red) is low (high) activation for ground truth
- smoother activation maps, more aligned with objects

dense classification (DC)

base classes

pooling

dense
novel classes

pooling

dense

- blue (red) is low (high) activation for ground truth
- smoother activation maps, more aligned with objects

results

5-way novel-class classification accuracy on minilmageNet

Method	1-shot	5-shot	10-shot
GAP	$58.61_{ \pm 0.18}$	$76.40_{ \pm 0.13}$	$80.76_{ \pm 0.11}$
DC (ours)	$62.53_{ \pm 0.19}$	$78.95_{ \pm 0.13}$	$82.66_{ \pm 0.11}$
DC + Wide	$61.73_{ \pm 0.19}$	$78.25_{ \pm 0.14}$	$82.03_{ \pm 0.12}$
DC + IMP (ours)	-	$79.77_{ \pm 0.19}$	$83.83_{ \pm 0.16}$
Gidaris et al.	$55.45_{ \pm 0.70}$	$73.00_{ \pm 0.60}$	-
ProtoNet	$56.50_{ \pm 0.40}$	$74.20_{ \pm 0.20}$	$78.60_{ \pm 0.40}$
TADAM	$58.50_{ \pm 0.30}$	$76.70_{ \pm 0.30}$	$80.80_{ \pm 0.30}$

- ResNet-12, following TADAM
- helps particularly on 1-shot

achievements

- revival of unsupervised metric learning
- self-learning without conventional pipelines
- revival of transductive methods and pseudo-labels
- dataset-wide analysis iteratively improves image representation
- first study of local activations in few-shot learning
- training to convergence in few-shot learning
- advances on robustness of convolutional networks

achievements

- revival of unsupervised metric learning
- self-learning without conventional pipelines
- revival of transductive methods and pseudo-labels
- dataset-wide analysis iteratively improves image representation
- first study of local activations in few-shot learning
- training to convergence in few-shot learning
- advances on robustness of convolutional networks
part IV

beyond

outline - part IV

(15) current work
(10) outlook

smooth adversarial examples

original

C\&W

distortion 3.64

sC\&W

distortion 4.59

- force perturbation to be 'smooth like' the input image
- despite the extra constraint, the smooth attack performs better

boundary projection (BP) attack

(a) PGD_{2} [16]

(c) DDN [25]

(b) C\&W [5]

(d) BP (this work)

- optimize distortion on class boundary, avoiding oscillations
- low-distortion adversarial examples at unprecedented speed

deep active learning

- use unlabeled data at model training, not just acquisition
- surprising improvement, compared to acquisition strategies
- random baseline beats other strategies in low-label regime

learning from few clean and many noisy labels

- large-scale unlabeled data: YFCC100M
- graph convolutional network discriminates clean from noisy data

few-shot few-shot learning

- few-shot version of few-shot learning: base class examples are few
- representation learning on large-scale data of different domain
- spatial attention by off-the-shelf ResNet-18 (pre-tained on Places)

nano-supervised object detection (NSOD)

- few weakly-labeled and many unlabeled images
- trade off less supervision with more data
- work with unknown classes in the wild

asymmetric metric learning (AML)

- combine supervised metric learning and knowledge transfer
- compatible with any pair-based loss function
- EfficientNet-B3 student outperforms ResNet-101 teacher on RevOP

take home message

exploring data and learning the representation are mutually beneficial

outline - part IV

(15) current work
(10) outlook

motivation

- computing power still incomparable to biological visual systems
- amount and quality of data still incomparable to what is seen by humans
- human visual long-term memory has a massive capacity
- current architectures are typically stateless

motivation

- computing power still incomparable to biological visual systems
- amount and quality of data still incomparable to what is seen by humans
- human visual long-term memory has a massive capacity
- current architectures are typically stateless

data as a first-class citizen in visual recognition

- data becomes explicit part of model than just its training process
- translate more storage capacity to better performance
- long term goal: artificial visual long-term memory

data as a first-class citizen in visual recognition

- data becomes explicit part of model than just its training process
- translate more storage capacity to better performance
- long term goal: artificial visual long-term memory

rethinking metric learning

- unify tasks and loss functions
- study all supervision settings that are common in classification
- apply loss functions globally on the entire dataset
- extend to detection and instance segmentation

category-level semantic alignment

- classes represented by tensors
- end-to-end learning using geometric alignment
- answer the invariance vs. discriminative power dilemma
- encourage sparse representations at inference

manifolds, indexing, and geometry

- scale up manifold search to billions
- use geometry: extend pairwise affinity from vectors to tensors
- extend to graph convolutional networks

learning while memorizing

- category-level tasks: a "summary" of training set explicitly memorized
- instance-level tasks: training and test sets become part of a continuously growing knowledge
- memory-based few-shot learning

on-manifold adversarial robustness

- adversarial defenses: "ultimate form" of regularization
- hurt on clean data, unless constrained on the manifold (?)
- generalize beyond smoothness and beyond classification
- model the manifold using true data

https://avrithis.net

[^0]: - negatives $S^{-}(\mathbf{x})$

