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instance-level tasks
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category-level tasks

number of instances

® scale

® viewpoint texture/color

occlusion ® pose

background clutter deformability

lighting ® intra-class variability



part |: exploring

® instance-level visual matching, search and clustering
® shallow visual representations and matching processes

® |ocal features, hand-crafted descriptors and visual vocabularies
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part |l: exploring deeper

® instance-level visual matching, search and object discovery
® deep visual representations and matching processes

® parametric models learned from visual data



part |l: exploring deeper

instance-level visual matching, search and object discovery
deep visual representations and matching processes
parametric models learned from visual data

focus on the manifold structure of the feature space

manifold search



part |l: exploring deeper

instance-level visual matching, search and object discovery
deep visual representations and matching processes
parametric models learned from visual data

focus on the manifold structure of the feature space

spatial matching



part |l: exploring deeper

instance-level visual matching, search and object discovery
deep visual representations and matching processes
parametric models learned from visual data

focus on the manifold structure of the feature space

spatial matching object discovery



part lll: learning

e learning deep visual representations by exploring visual data
e focus limited or no supervision

® progress from instance-level to category-level tasks
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e learning deep visual representations by exploring visual data
e focus limited or no supervision
® progress from instance-level to category-level tasks
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part Ill: learning

e learning deep visual representations by exploring visual data
e focus limited or no supervision
e progress from instance-level to category-level tasks
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part IV

reflection
® current work

® take home message

outlook
® 3 vision

® research directions

: beyond
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© context



scale-invariant feature transform (SIFT)

visual recognition works under occlusion, lighting and viewpoint changes

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



scale-invariant feature transform (SIFT)

local feature
detection by DoG

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.
Lowe. ICCV 1999. Object recognition from local scale-invariant features.



scale-invariant feature transform (SIFT)
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local feature descriptor as histogram
detection by DoG of gradient orientation

Daugman. VR 1980. Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles.
Lowe. ICCV 1999. Object recognition from local scale-invariant features.



scale-invariant feature transform (SIFT)

visual recognition works under occlusion, lighting and viewpoint changes
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local feature descriptor as histogram localization by
detection by DoG of gradient orientation Hough transform

|

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.
Lowe. ICCV 1999. Object recognition from local scale-invariant features.



bag of words (BoW)

instance-level
e clusters of SIFT descriptors

® images described by visual
word histograms

® text retrieval, e.g. TF-IDF,
inverted files
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Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag of words (BoW)

instance-level
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category-level
® naive Bayes or SVM classifier

e features soon to be replaced
by dense

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.
Csurka, Dance, Fan, Willamowski and Bray. SLCV 2004. Visual Categorization With Bags of Keypoints.



challenges

thousands of local features per image
vocabularies may need to be very large
bag-of-words invariant but not discriminative
spatial matching does not scale well
quantization hurts

burstiness of visual elements hurts

need for efficient nearest neighbor search

datasets are redundant
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© visual vocabularies



vocabulary size
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classification
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Gemert, Geusebroek, Veenman and Smeulders.
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ECCV 2008. Kernel Codebooks for Scene Categorization.
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Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



problems

* with k£ = 10 visual words and n = 107 descriptors, vocabulary
learning is very expensive: only variants of k-means

e for each value of k tested, one needs to not only learn the vocabulary,
but also re-index a very large image collection

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



beyond k-means

approximate k-means (AKM)
® centroids updated as in k-means

® points assigned to centroids by randomized k-d trees

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



beyond k-means

approximate k-means (AKM)
® centroids updated as in k-means

® points assigned to centroids by randomized k-d trees

approximate Gaussian mixtures (AGM)

® keep nearest neighbors between iterations and use them to model a
Gaussian mixture

e dynamically estimate k by purging overlapping components

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.



approximate Gaussian mixtures

iteration 0: 50 clusters

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.



approximate Gaussian mixtures

iteration 1: 15 clusters

Auvrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.



approximate Gaussian mixtures

iteration 2: 10 clusters

Auvrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.



approximate Gaussian mixtures

iteration 3: 8 clusters

Auvrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.



results

image search: mAP on Oxfordbk

Method RAKM AKM  AGM
k 350k 500k 550k 600k 700k 550k 857k

5k 0.471 0.479 0486 0.485 0.476 0.485 0.492
5k + 20k 0.439 0.440 0448 0.441 0.437 0.447 0.459
5k + 1M - - 0.250 - - - 0.280

® RAKM roughly equivalent to AKM, only faster
® AGM superior, with k = 857k automatically inferred in a single run

Li, Yang, Hua and Zhang. ACM-MM 2010. Large-Scale Robust Visual Codebook Construction.
Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.



outline — part |

@ spatial matching



robust matching

Hough transform

® detect patterns by a voting
process in parameter space

Hough. US Patent 1962. Method and Means for Recognizing Complex Patterns.



robust matching

Hough transform

® detect patterns by a voting
process in parameter space

T T T 1
- random sample consensus
o | (RANSAC)
- ® jteratively generate hypotheses
N [FINAL LEAST. N at random, fit model, and verify
Lo L L hypotheses by counting inliers

Hough. US Patent 1962. Method and Means for Recognizing Complex Patterns.
Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



using local shape

a single correspondence of SIFT features yields a 4-dof transformation

Lowe
® hypotheses: sparse Hough voting in
4-dimensional space
e verification: find inliers for bins with
at least 3 votes

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



using local shape

a single correspondence of SIFT features yields a 4-dof transformation

Lowe

® hypotheses: sparse Hough voting in
4-dimensional space

e verification: find inliers for bins with
at least 3 votes

L. fast spatial matching (FSM)
® 3 4 or 5-dof transformation
lm lﬁg ® RANSAC with one hypothesis per

®%® correspondence

Lowe. ICCV 1999. Object recognition from local scale-invariant features.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



using local shape

a single correspondence of SIFT features yields a 4-dof transformation

Lowe

® hypotheses: sparse Hough voting in
4-dimensional space

e verification: find inliers for bins with
at least 3 votes

@L. fast spatial matching (FSM)
® 3 4 or 5-dof transformation
lH‘ lﬁg ® RANSAC with one hypothesis per

@ - @ correspondence

both are quadratic in the number of correspondences

Lowe. ICCV 1999. Object recognition from local scale-invariant features.
Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



Hough pyramid matching (HPM)

fast spatial matching

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

Hough pyramid matching

® robust to deformation, multiple surfaces, invariant to transformations

® |inear in the number of correspondences; no need to count inliers

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



performance vs. time
image search on World Cities 2M
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average time to filter and rerank (s)

® more than 10 times faster, more accurate

Jégou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.
Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.
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© beyond vocabularies



pairwise matching vs. aggregation

Hamming embedding (HE)
® large vocabulary
® matching of binary signatures

® selective: discard weak votes

Jégou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.



pairwise matching vs. aggregation

Hamming embedding (HE)
® large vocabulary
® matching of binary signatures

® selective: discard weak votes

vector of locally aggregated
descriptors (VLAD)

® small vocabulary

® one aggregated vector per cell

® not selective

Jégou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.
Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



aggregated selective match kernel (ASMK)

¢ borrow from HE the idea that descriptor pairs are selected by a
nonlinear function

Kue(X,Y) =Y > 1dn(b(z), b(y)) < 7]

zeX yeYy

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



aggregated selective match kernel (ASMK)

¢ borrow from HE the idea that descriptor pairs are selected by a
nonlinear function

KHE X Y Z Z dH )) T]

zeX yeYy

® borrow from VLAD the idea that residuals are aggregated per cell

Kyiap(X,Y) =V(X)'V¥)= > r@)'r(y)

zeX yeYy

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



aggregated selective match kernel (ASMK)

¢ borrow from HE the idea that descriptor pairs are selected by a
nonlinear function

KHE X Y Z Z dH )) T]

zeX yeYy

® borrow from VLAD the idea that residuals are aggregated per cell

Kyiap(X,Y) =V(X)'V¥)= > r@)'r(y)

zeX yeYy

® combine aggregation within cells with selectivity between cells
Kasmk(X,Y) := oo (V(X)TV(Y))
where & := x/||z|| and o, a nonlinear selectivity function

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



impact of selectivity

correspondences weighed based on confidence

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



impact of aggregation and burstiness
k = 65k as in HE

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



results

image search: mAP

Dataset MA  Oxfbk Oxfl05k Par6k Holiday
ASMK* 76.4 69.2 74.4 80.0
ASMK* v 80.4 75.0 77.0 81.0
ASMK 78.1 - 76.0 81.2
ASMK v 81.7 - 78.2 82.2
HE [Jégou et al. '10] 51.7 - - 74.5
HE [Jégou et al. '10] v 56.1 - - 77.5
HE-BURST [Jain et al. '10] 64.5 - - 78.0
HE-BURST [Jain et al. '10] v 67.4 - - 79.6
Fine vocab. [Mikulik et al. '10] v 74.2 67.4 74.9 74.9

® |ast state of the art before deep learning

e still state of the art on CNN features

Tolias, Avrithis and Jégou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



locally optimized product quantization

- 49 4.

builds on PQ, searching fast in the compressed domain

® better captures the support of data distribution

state of the art at billion scale for years

deployed on entire Flickr collection

Jégou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.
Kalantidis and Avrithis. CVPR 2014. Locally Optimized Product Quantization for Approximate Nearest Neighbor Search.
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e exploring photo collections



community photo collections

* applications: browsing, 3D reconstruction, location/landmark
recognition

e focus on popular subsets like landmarks and points of interest

Crandall, Backstrom, Huttenlocher and Kleinberg. WWW 2009. Mapping the World's Photos.



view clustering

® geo clustering: according to geographic location

e visual clustering: according to visual similarity (inliers)

Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view clustering

® geo clustering: according to geographic location

e visual clustering: according to visual similarity (inliers)

® both landmark and non-landmark images

Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alignment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alighment

aligned images

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alighment

aligned images
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Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alighment

aligned images

- _

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alignment

aligned images
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Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alignment

aligned images
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Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alignment

aligned images
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Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.




view alignment

aligned images

Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alignment

aligned images
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Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alignment

aligned images
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Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



view alignment

aligned images
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Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.
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view alignment

aligned images
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Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.
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scene map construction

before feature clustering

Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



scene map construction

after feature clustering

Auvrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo
Collections.



results

image search on European Cities 1M

Method Time mAP
Baseline BoW 1.03s 0.642
QE; 20.30s 0.813
QE-> 2.51s 0.686
Scene maps 1.29s 0.824

e QE;: iterative query expansion, re-query using the retrieved images

and merge, 3 times iteratively

® QE,: create scene map using the initial results and re-query once

® scene maps: similar to QE; but as fast as baseline

Chum, Philbin, Sivic, Isard and Zisserman. ICCV 2007. Total Recall: Automatic Query Expansion With a Generative Feature

Model for Object Retrieval.

Avrithis, Kalantidis, Tolias and Spyrou. ACM-MM 2010. Retrieving Landmark and Non-Landmark Images From Community Photo

Collections.



http://viral.image.ntua.gr

online since 2008

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.


http://viral.image.ntua.gr

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.



results
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Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.



suggested tags

Suggested tags:
Frequent user tags: Victoria Tower Gardens, Buxton Memorial Fountain, Wlnchester Palace,
Architecture, Victorian gothic

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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Victoria Tower Gardens

From Wikipedia, the free encyclopedia Coerdinates: () $1729 49.0°M 07 0.0/

Victoria Tower Gardens is a public park alang the north bank of the River Thames in Landon. As its name suggests, it is agjacent to
the Victaria Tower, the south-westem comer of the Palace of Westminster. The park, which extends southwards from the Palace to
Larnbeth Bridge, sandwiched between Millsank and the river, also forms pat of the Thames Embankment

Contents [ri]
1 Features

2 Transport

3 History

4 External links
5 Referances

ictaria Tawer Gardens, 2008, wilhthe Buxdon &1
[edit]  bemorisl Fourtein stthe fronk and the Palece of
Westminster in the backgreund

Features

The park features
« A reproduction of the sculpture The Burghers of Calais by Auguste Rodin, purchased by the Biitish Gavernment in 1911 and positioned in the Gardens in 1915
« 41930 statue of the sufiagette Emmaline Pankhurst, by A.G. Walker.
o The Buxton Memarial Fountain - ariginally constructed in Parliament Square, this was removed in 1340 and placed in its present position in 1957. |t was commissioned by Charles
Buxton MP to commemarate the emancipation of slaves in 1834, dedicated to his father Tharnas Fowell Buxtan, and designed by Gathic architect Samuel Sanders Teulon
(1812-1673) in 1885,

A stone wall with two maderm-style goats with kids - situated at the souther end of the Gardens.

Transport [edit]

Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.



VIRaL Explore
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Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.



VIRaL Explore
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Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.
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Kalantidis, Tolias, Avrithis, Phinikettos, Spyrou, Mylonas and Kollias. MTAP 2011. VIRaL: Visual Image Retrieval and Localization.



achievements

one-off construction of vocabularies

fast and more accurate spatial matching

beyond BoW: approximate descriptors, fighting burstiness
nearest neighbor search in compressed domain
dataset-wide analysis improves image representation

widespread dissemination of novel applications



achievements and more challenges

one-off construction of vocabularies

fast and more accurate spatial matching

beyond BoW: approximate descriptors, fighting burstiness
nearest neighbor search in compressed domain
dataset-wide analysis improves image representation
widespread dissemination of novel applications

either high quality or compact representation
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2028 ' 2048 \dense

128

128 Max
Max Max pooling
pooling pooling

learning visual representations from raw data works at scale

Krizhevsky, Sutskever and Hinton. NIPS 2012. ImageNet Classification with Deep Convolutional Neural Networks.



2048 ' 2

5 gas \dense

128 Max
Max 128 Max pooling
pooling pooling

2048 2048

CNN, SG
backprop

LeCun, Boser, Denker et al . NIPS 1990. Handwritten Digit Recognition with a Back-Propagation Network.
Krizhevsky, Sutskever and Hinton. NIPS 2012. ImageNet Classification with Deep Convolutional Neural Networks.



2048 ' 2

=5 gas \dense

128 Max
Max 128 Max pooling
pooling pooling

2048 2048

A g B

CNN, SG ImageNet
backprop (1.2M images)

Russakovsky, Deng, Su, Krause et al. 2014. Imagenet Large Scale Visual Recognition Challenge.
Krizhevsky, Sutskever and Hinton. NIPS 2012. ImageNet Classification with Deep Convolutional Neural Networks.



2028 ' 2048 \dense

128

128 Max
Max T8 Max pooling
pooling pooling

2048 2048

CNN, SGD ImageNet graphics processing
backprop (1.2M images) units (GPU)

Chellapilla, Puri and Simard. FHR 2006. High Performance Convolutional Neural Networks for Document Processing.
Krizhevsky, Sutskever and Hinton. NIPS 2012. ImageNet Classification with Deep Convolutional Neural Networks.



2028 ' 2048 \dense

2048 2048

128 Max
Max Max pooling
pooling pooling

CNN, SGD ImageNet graphics processing rectified linear
backprop (1.2M images) units (GPU) unit (ReLU)

Nair and Hinton. ICML 2010. Rectified Linear Units Improve Restricted Boltzmann Machines.
Krizhevsky, Sutskever and Hinton. NIPS 2012. ImageNet Classification with Deep Convolutional Neural Networks.



instance-level tasks

712

s 5 optiized| ConvNet for transferability

60 @mm

mAP

52

‘O

23/3 12/5  22/6
Date in 2014

15/11

20/12

regional CNN features

® jump more than 30% mAP in
few months

e outperform SIFT pipeline

Razavian, Sullivan, Maki and Carlsson. arXiv 2015. Visual Instance Retrieval with Deep Convolutional Networks.



instance-level tasks

regional CNN features
—T1.2
& ol optishized] ConvNet for transferability . .
N /“ ® jump more than 30% mAP in
wf [ rch s few months
| o
mﬁ e outperform SIFT pipeline
23/3 12/5 22/6 15/11 20/12
Date in 2014

self-supervision
* max-pooling (MAC/R-MAC),
generalized mean (GeM)

® SfM pipeline based on SIFT,
BoW and RANSAC

Razavian, Sullivan, Maki and Carlsson. arXiv 2015. Visual Instance Retrieval with Deep Convolutional Networks.
Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



opportunities and challenges

powerful global representation

feature space still exhibits manifold structure

graph-based methods now feasible but still do not scale well
regional or local information often overlooked

richness of convolutional activations not well understood

dataset-wide analysis often missing in favor of stochastic updates
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@ searching on manifolds



graph-based methods

now that a high-quality representation is possible with just one or few
vectors per image, graph-based methods are more relevant than ever



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 0 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 1 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 2 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 3 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 4 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 5 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 6 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 7 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 8 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® data points (¢), query points (), nearest neighbors ()
® iteration 9 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® random walk with restart (RWR)
£ .= oWt 4 (1 — )y

where y: query vector, W: adjacency matrix, f: ranking vector

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds (diffusion)

® random walk with restart (RWR)
£ .= oWt 4 (1 — )y

where y: query vector, W: adjacency matrix, f: ranking vector
¢ apply to regional CNN features
® solve linear system
L.f=y
by conjugate gradient (CG) method, where regularized Laplacian

£, =t aW
1l -«

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.
Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



CG vs. RWR

image search with regional VGG features (d = 512)

98

96

94

mAP

92

90

0.7s 3.1s
____.—-—.——-.
—"‘ ——————— N
r‘.-“—
0.6s 2.6s

_ .-
_e---"®

—e— Oxf5k (CG) —e— Parbk (CG)
- - Oxf5k (RWR) - e~ Par6k (RWR)
| I I I I N N N

10

Iscen, Tolias, Avrithis, Furon and Chum.
Compact CNN Representations.

30 50 70 100

iterations

CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With



fast spectral ranking (FSR)

——a=0.99
—a =09
— a=0.7

® low-pass filtering in the frequency domain

e or, “soft” dimensionality reduction

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



results
mAP using ResNet-101 features (d = 2, 048)

Method m  Instre Oxf5k Oxfl05k Par6k Par106k

Regional Features: R-Match
Euclidean 21 71.0 88.1 85.7 94.9 91.3

AQE 21 771 91.0 89.6 95.5 92.5
CG 5 884 95.0 90.0 96.4 95.8
FSR 5 885 95.1 93.0 96.5 95.2

® helps particularly on Instre, which contains small objects on
background clutter

® FSR (rank r = 5k) has same performance as CG, is two orders of
magnitude faster, needs 3x space

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



hard examples?

o5 Al i B VR s

(AP: 92.1)  #5 #32 #51 #70 #71 #76 #7179 #126

\ . Y v 7 ) ] 1
B et ol ol " B 1, e
(AP: 92.7)  #2 #4 #38 #61 #68 #H72 #75 #108
e red: drift

® blue: incorrect annotations

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



Oxford and Paris revisited (RevOP)

fixed annotation errors

o S B
T AN

1 million hard distractors

new queries

Radenovic, Iscen, Tolias, Avrithis, Chum. CVPR 2018. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking.
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© spatial matching



revival of local features

learned invariant feature
transform (LIFT)

® |earned SIFT: detection,
orientation estimation,
descriptor extraction

® trained on patch-level labels

Yi, Trulls, Lepetit and Fua. ECCV 2016. LIFT. Learned Invariant Feature Transform.



revival of local features

learned invariant feature
transform (LIFT)

® |earned SIFT: detection,
orientation estimation,
descriptor extraction

® trained on patch-level labels

Large-Scale
™

deep local features (DELF)
e self-attention to detect keypoints

® trained on image-level labels

DELF Pipeline

Yi, Trulls, Lepetit and Fua. ECCV 2016. LIFT. Learned Invariant Feature Transform.
Noh, Araujo, Sim, Weyand and Han. ICCV 2017. Large-Scale Image Retrieval With Attentive Deep Local Features.



motivation

view 2

\

map 1

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



motivation

view 2 view 3

\

map 1

map 2

e different local features present in each feature map (channel)

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



deep spatial matching (DSM)

input image

1

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



deep spatial matching (DSM)

input image feature map

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



deep spatial matching (DSM)

input image feature map local features
Y _—
f g g
—| Oo
CNN detect o9
1 P

% 0% o

2 Ao 7)2
f g 2
| — )
CNN detect o

¢ |ocal features detected by MSER independently per channel

Matas, Chum, Urban and Pajdla. BMVC 2002. Robust Wide Baseline Stereo From Maximally Stable Extremal Regions.
Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



deep spatial matching (DSM)

input image feature map local features inliers
_—
0
g o
—| Oo
detect o9

<=9 %\
-]

) A2
f g
—| —|
CNN detect

¢ |ocal features detected by MSER independently per channel
¢ inliers found by fast spatial matching

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
Matas, Chum, Urban and Pajdla. BMVC 2002. Robust Wide Baseline Stereo From Maximally Stable Extremal Regions.
Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



example

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



example

® |ocal maxima on each activation channel are “local features”

® channels are “visual words" - no vocabulary needed

Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



results
mAP on RevOP using diffusion

Method Medium Hard
ROxf +RIM RPar +R1IM

V-MACx 67.7 56.8 39.8 29.4
V-MACx+DSM 72.0 59.2 43.9 32.0
R-MACx 1t 73.9 61.3 45.6 31.9
R-MACx1T+DSM  76.9 65.7 49.4 35.7
V-GeM 69.6 60.4 41.1 33.1
V-GeM+DSM 72.8 63.2 45.4 35.4
R-GeM1 70.1 67.5 41.5 39.6
R-GeM1+DSM 75.0 70.2 46.2 41.9

® V: VGG-16, R: ResNet-101

* MAC: max-pooling, GeM: generalized mean pooling

Radenovic, Tolias and Chum. PAMI 2018. Fine-Tuning CNN Image Retrieval with No Human Annotation.
Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.
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@ discovering objects



from attention to detection

object proposals
® class-agnostic objectness
measure

® essential component of modern
two-stage object detectors

Alexe, Deselaers and Ferrari. CVPR 2010. What is an Object?



from attention to detection

object proposals
® class-agnostic objectness
measure

® essential component of modern
two-stage object detectors

unsupervised object discovery

I

® segmentation-based ROls

R [ B : @‘m -D ® rank by link analysis on entire
=Pl BN g ’

dataset (PageRank)

Alexe, Deselaers and Ferrari. CVPR 2010. What is an Object?
Kim and Torralba. NIPS 2009. Unsupervised Detection of Regions of Interest Using lterative Link Analysis.



feature saliency (FS) map

® sparsity-sensitive channel weights on convolutional activations

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.



region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition



region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition



region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
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region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition



region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
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region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition



region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition



region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
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region detection with EGM

® EGM generalized from points to 2d functions (images)
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region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
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region detection with EGM

® EGM generalized from points to 2d functions (images)
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region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
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region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
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region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition



region detection with EGM

® EGM generalized from points to 2d functions (images)

Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies
Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition



object saliency (OS) map

e centrality extended to unseen image patches by non-parametric
regression

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.



object saliency (OS) map

® centrality extended to unseen image patches by non-parametric
regression

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.



object saliency (OS) map

graph W

® centrality extended to unseen image patches by non-parametric
regression

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.



object saliency (OS) map

graph W

® centrality extended to unseen image patches by non-parametric
regression

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.



object saliency (OS) map

graph W

® centrality extended to unseen image patches by non-parametric
regression

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.



object saliency (OS) map

image

5 graph W

e centrality extended to unseen image patches by non-parametric
regression

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.



FS vs. OS

Siméoni, Iscen, Tolias, Avrithis, Chum. WACV 2018. Unsupervised deep object discovery for instance recognition.



results

mAP on Instre and RevOP using global features

Method Medium Hard
Instre ROxf RPar ROxf RPar
GeM 57.0 62.0 69.3 33.7 443

FS.EGM 577 63.0 687 345 439
OS.EGM 613 642 699 359 461

¢ global features, pooled from FS/OS regions

® helps particularly on Instre, which contains small objects on
background clutter

Siméoni, Iscen, Tolias, Avrithis, Chum. MVA 2019. Graph-Based Particular Object Discovery.



achievements

efficient manifold search

manifold search as smoothing, space-time trade-off

new retrieval benchmark

local features emerge without training or altering the architecture
consistent global and local representations

suppressing background clutter, without supervision

dataset-wide analysis improves image representation



achievements and more challenges

efficient manifold search

manifold search as smoothing, space-time trade-off

new retrieval benchmark

local features emerge without training or altering the architecture
consistent global and local representations

suppressing background clutter, without supervision

dataset-wide analysis improves image representation

how to learn from minimal data or supervision?
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learning
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@ context



learning with less supervision

historically

e common (Neocognitron, BoW, layer-wise pre-training)

in deep learning

® the norm: lots of data, full supervision



learning with less supervision

historically

e common (Neocognitron, BoW, layer-wise pre-training)

in deep learning

® the norm: lots of data, full supervision
* less data/supervision by:

® autoencoders, generative models

® transfer learning, domain adaptation

® proxy tasks: self-supervision, e.g. video, geometric layout, rotation,
instance discrimination

incremental, few-shot, semi-supervised, weakly-supervised, noisy labels,
active learning



category-level and instance-level tasks converge

® most elements common, e.g. architectures, loss functions,
representation learning
® main difference in data and labels, defining factors of variation to
which invariances need to be learned, e.g.
® category-level: within-class appearance variation
® instance-level: occlusion, clutter, viewpoint changes
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@® metric learning



manifold learning

TE

¢ classic methods are unsupervised

® do not learn an explicit mapping from input to embedding space

Lee and Verleysen. Springer, 2007. Nonlinear dimensionality reduction.



metric learning

S B e . .
P contrastive learning
4 e ® contrastive loss:
L b B o . .
=y ‘? positive/negative pairs
'?, ”.«'g, e ® unsupervised manifold learning
w §R « ® explicit nonlinear mapping

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



metric learning

contrastive learning
® contrastive loss:
positive/negative pairs
® unsupervised manifold learning

® explicit nonlinear mapping

supervised metric learning
® linear mapping
® positive/negative pairs defined
according to class labels

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.
Xing, Jordan, Russell and N. NIPS 2003. Distance Metric Learning with Application to Clustering with Side-Information.



mining on manifolds (MoM)

* data points (°), query point x ()

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds (MoM)

Nowl > £33
P b o W T e Y

* data points (°), query point x ()
* Euclidean nearest neighbors E(x) (e)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds (MoM)

Nowly > £33
P bt W T e Y

* data points (°), query point x ()
* manifold nearest neighbors M (x) (e)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds (MoM)

* data points (°), query point x ()
® hard positives ST = M(x) \ E(x) ()

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds (MoM)

* data points (°), query point x ()
® hard negatives S™ = E(x) \ M(x) (e)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

* query (anchor) (x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

* query (anchor) (x)
* positives ST (x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

ﬁ nﬁﬁ ﬁ

* query (anchor) (x)

* positives ST(x) vs. Euclidean neighbors E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

ﬁ nﬁﬁ mﬁ ﬂ

* query (anchor) (x)

* positives ST(x) vs. Euclidean neighbors E(x)
® negatives S™(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

ﬁ nﬁﬁ m-l ‘.Nl

* query (anchor) (x)
* positives ST(x) vs. Euclidean neighbors E(x)
® negatives S (x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



results

fine-grained categorization

Method Labels R@1 R©@2 R@4 RO8 NMI
Baseline 35.0 46.8 59.3 720 48.1
Cyclic match 408 528 651 76.0 526
MoM (ours) 453 578 686 784 550

Triplet4-semi-hard v 423 550 664 772 554
Lifted-structure v 436 56.6 686 79.6 56.5
Triplet+ v 459 577 69.6 79.8 58.1
Clustering v 482 614 718 819 59.2
Triplet+++ v 49.8 623 741 833 599

e CUB200-2011 dataset, 200 bird species, 100 training / 100 testing

® GoogleNet pre-trained on ImageNet, then fine-tuned with triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



results

particular object retrieval

Method Hol Instre Oxfbk Oxfl05k Par6k Parl06k
Testing on MAC

Baseline 79.4 485 58.5 50.3 73.0 590.0

StM 81.4 485 79.7 73.9 82.4 74.6

MoM (ours) 82.6 555 787 74.3 83.1 75.6
Testing on R-MAC

Baseline 870 556 680 610 766 721
SfM 844 477 778 701 841 7638
MoM (ours) 875 577 782 726 851 780

® VGG-16 pre-trained on ImageNet, then fine-tuned with constrastive
loss on a 1M unlabeled dataset with MAC pooling

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



outline — part Il

® semi-supervised learning



semi-supervised learning

* labeled points (A)

Zhou, Bousquet, Lal, Weston, Schélkopf. NIPS2003. Learning with Local and Global Consistency.



semi-supervised learning

o (@)
o OOO
o

O@%@%@o QOO ﬁ 521338 v
T WY
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OO
* labeled points (A), unlabeled points x (0)

Zhou, Bousquet, Lal, Weston, Schélkopf. NIPS2003. Learning with Local and Global Consistency.



label propagation (transductive)

C o
0 o0 o
o

.‘xk‘ ‘.o (ngg, o
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ot

0.. *..

* labeled points (A), unlabeled points x (0)
® propagated labels (@)

Zhou, Bousquet, Lal, Weston, Schélkopf. NIPS2003. Learning with Local and Global Consistency.



label propagation (transductive)

* labeled points (A), unlabeled points x (0)
* propagated labels (@), certainty of prediction

Zhou, Bousquet, Lal, Weston, Schélkopf. NIPS2003. Learning with Local and Global Consistency.



common inductive approaches

pseudo-labels
Y“T Y0 otherwise ® treat predictions as ground truth
® dates back to the 60's

, {1 if i = argmax; fi (z)

Lee. WCRL 2013. Pseudo-Label: the Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks.



common inductive approaches

/ {1 if i — argmax, fy(2) pseudo-labels

Y“T Y0 otherwise ® treat predictions as ground truth
® dates back to the 60's

| e consistency losses
' t t .. .
—_) (=— * predictions of similar networks
= =" =}" on same input encouraged to be

Lee. WCRL 2013. Pseudo-Label: the Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks.
Tarvainen and Valpola. NIPS 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results.



deep label propagation (DLP) (inductive)
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Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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deep label propagation (DLP) (inductive)

classifier fy
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deep label propagation (DLP) (inductive)

classifier fy
-
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feature map 1_
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%
train with
Ls(XL,Yr;0)
for T' epochs use ¢g
features ¢g(X)
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Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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deep label propagation (DLP) (inductive)
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deep label propagation (DLP) (inductive)

classifier fy
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Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.



results

classification error

Dataset CIFAR-10 CIFAR-100 minilmageNet
# Labels 500 1,000 4,000 10,000 4,000 10,000
Supervised 49.08 40.03 5543 40.67 53.07 38.28

DLP 3240 22.02 46.20 38.43 4758 36.14
MT 2745 19.04 4536 36.08 49.35 3251
MT+DLP 2402 16.93 4373 3592 50.52 31.99

® C13 on CIFAR-10/100, ResNet-18 on miniimageNet
® either DLP or MT+DLP works best

Tarvainen and Valpola. NIPS 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results.
Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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few-shot learning

metric learning
® |earn to compare on base classes

® at inference: compare on novel
classes

Vinyals, Blundell, Lillicrap, Kavukcuoglu and Wierstra. NIPS 2016. Matching Networks for One-Shot Learning.



few-shot learning

metric learning
® |earn to compare on base classes

® at inference: compare on novel
classes

embedding | Base classifier
oz

W cosine similarity-based classifier

. e features and class weight vectors
im"""“"g—lnovsl m 2-normalized

weights

w W

® standard cross-entropy loss on
H base classes

Extended classifier

Vinyals, Blundell, Lillicrap, Kavukcuoglu and Wierstra. NIPS 2016. Matching Networks for One-Shot Learning.
Qi, Brown and Lowe. CVPR 2018. Low-Shot Learning With Imprinted Weights.



from tensors to vectors

feature (d) — class weights
wn
e
2 | ¢(x) wi [ w2 || W3
j o)
©
1

flattening

e flattening is very discriminative, but not invariant

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.



from tensors to vectors

~

feature (d) — class weights
feature (d) —
§ o class weights
R NN I I | 2 | 4(@)
£ s I e
2 S
1

® O,
[ a ] [T T1Ho)=(¢)

flattening global pooling

«—

e flattening is very discriminative, but not invariant

* global spatial pooling (GAP) is invariant, but less discriminative

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.



dense classification (DC)

[ wi |[ w2 |[ w3 ]| class weights

feature (d) —

o(z)(r1)

b(x)

p(z)(r2)

«— («) |eneds

® 1 x 1 convolution followed by depth-wise softmax

e classifier encouraged to make correct predictions everywhere

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.



dense classification (DC)

[ wi |[ w2 |[ w3 ]| class weights

feature (d) —

o(z)(r1)

b(x) p(z)(r2)

«— («) |eneds

® 1 x 1 convolution followed by depth-wise softmax
e classifier encouraged to make correct predictions everywhere

® behaves like implicit data augmentation of exhaustive shifts and crops

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.



dense classification (DC)

base classes

pooling dense

¢ blue (red) is low (high) activation for ground truth
® smoother activation maps, more aligned with objects

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.



dense classification (DC)

base classes novel classes
pooling dense pooling dense

® blue (red) is low (high) activation for ground truth
® smoother activation maps, more aligned with objects

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.



results

5-way novel-class classification accuracy on minilmageNet

Method 1-shot 5-shot 10-shot
GAP 58.61+01s 76.40+013 80.76+0.11
DC (ours) 62.53+010  78.95+013 82.66x011
DC + Wide 61.73+010 78.25+014 82.03+0.12
DC + IMP (ours) - 79.77+010 83.83+0.16
Gidaris et al. 55.45+070 73.00+0.60 -
ProtoNet 56.50+040 74.20+020 78.60-+0.40
TADAM 58.50+030 76.70+030 80.80+0.30

¢ ResNet-12, following TADAM

® helps particularly on 1-shot

Gidaris and Komodakis. CVPR 2018. Dynamic Few-Shot Visual Learning Without Forgetting.
Oreshkin, Rodriguez, Lacoste. NIPS 2018. TADAM: Task dependent adaptive metric for improved few-shot learning.
Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.



achievements

revival of unsupervised metric learning

self-learning without conventional pipelines

revival of transductive methods and pseudo-labels
dataset-wide analysis iteratively improves image representation

first study of local activations in few-shot learning



achievements

revival of unsupervised metric learning

self-learning without conventional pipelines

revival of transductive methods and pseudo-labels
dataset-wide analysis iteratively improves image representation
first study of local activations in few-shot learning

training to convergence in few-shot learning

advances on robustness of convolutional networks
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smooth adversarial examples

distortion 3.64 distortion 4.59

e force perturbation to be ‘smooth like' the input image

® despite the extra constraint, the smooth attack performs better

Zhang, Avrithis, Furon and Amsaleg. JIS, in press. Smooth Adversarial Examples.



boundary projection (BP) attack

T T T ‘
k\ T —
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(a) PGD, [16] (b) C&W [5] [ \
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(c) DDN [25] (d) BP (this work) # Grad

b

® optimize distortion on class boundary, avoiding oscillations

® low-distortion adversarial examples at unprecedented speed

Zhang, Avrithis, Furon, Amsaleg. arXiv 2019. Walking on the Edge: Fast, Low-Distortion Adversarial Examples.



deep active learning

—— Random CoreSet Uncertainty jLP CEAL
-e- + PRE -.@--+ PRE + SEMI

90

average accuracy

cycle cycle cycle cycle
(a) SVHN (b = 100) (b) CIFAR-10 (b = 100) (c) CIFAR-10 (b = 1000) (d) CIFAR-100 (b = 1000)

® use unlabeled data at model training, not just acquisition
® surprising improvement, compared to acquisition strategies

® random baseline beats other strategies in low-label regime

Siméoni, Budnik, Avrithis and Gravier. ICPR 2020. Rethinking Deep Active Learning: Using Unlabeled Data at Model Training.



learning from few clean and many noisy labels

Labeled example Class relevance prediction

1. djacency graph with GCN
per class

3. elevance score output

Use for
= classifier
training
2 /
Loss-clean + A Loss-noisy

E classify as
positives negatives

Additional data

® |arge-scale unlabeled data: YFCC100M

e graph convolutional network discriminates clean from noisy data

Iscen, Tolias, Avrithis, Chum, Schmid. arXiv, 2019. Graph Convolutional Networks for Learning with Few Clean and Many Noisy
Labels.



few-shot few-shot learning

e few-shot version of few-shot learning: base class examples are few

® representation learning on large-scale data of different domain

® spatial attention by off-the-shelf ResNet-18 (pre-tained on Places)

Lifchitz, Avrithis and Picard. arXiv 2020. Few-Shot Few-Shot Learning and the Role of Spatial Attention.



nano-supervised object detection (NSOD)

learning
object
detector

ese (#classes)
horse

e few weakly-labeled and many unlabeled images
¢ trade off less supervision with more data

® work with unknown classes in the wild

Z. Yang, M. Shi, Y. Avrithis, C. Xu, V. Ferrari. arXiv 2019. Training Object Detectors from Few Weakly-Labeled and Many
Unlabeled Images.



asymmetric metric learning (AML)

O g(n) /O g(n) O g(n) g(n)
/
/
fo(n) ® fo(n) ® fo(n) ® !

, fo(n) @
/I///
I /
fola) ®@ 0 g(a) fola) @>—0 g(a) fo(a) @ & g(a) fo(a) @ © gla)
o 9(p) / 9() T e \o 9(p)
fo(p) ® fop) ® folw) ® folr) ®
(a) symmetric (b) regression (c) relational (d) asymmetric (this work)

® combine supervised metric learning and knowledge transfer
® compatible with any pair-based loss function

e EfficientNet-B3 student outperforms ResNet-101 teacher on RevOP

Budnik and Avrithis. arXiv 2020. Asymmetric Metric Learning for Knowledge Transfer.



take home message

exploring data and learning the representation
are mutually beneficial
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motivation

® computing power still incomparable to biological visual systems

® amount and quality of data still incomparable to what is seen by
humans



motivation
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® computing power still incomparable to biological visual systems
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Sad g

® amount and quality of data still incomparable to what is seen by
humans

® human visual long-term memory has a massive capacity

® current architectures are typically stateless

Brady, Konkle, Alvarez and Oliva. PNAS 2018. Visual long-term memory has a massive storage capacity for object details.



data as a first-class citizen in visual recognition

® data becomes explicit part of model than just its training process

® translate more storage capacity to better performance



data as a first-class citizen in visual recognition

® data becomes explicit part of model than just its training process
® translate more storage capacity to better performance

® long term goal: artificial visual long-term memory



rethinking metric learning

unify tasks and loss functions

study all supervision settings that are common in classification

apply loss functions globally on the entire dataset

extend to detection and instance segmentation

Hadsell, Chopra and LeCun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.
Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning Without Labels.



category-level semantic alignment

Xw ™y
mXxhxw -
RP 4 N
Fusion
Layer
R4 A;—'
mxhxw R
hxw
cXhxw cXhxw

® classes represented by tensors

¢ end-to-end learning using geometric alignment

® answer the invariance vs. discriminative power dilemma
® encourage sparse representations at inference

Hou, Chang, Ma, Shan and Chen. arXiv 2019. Cross Attention Network for Few-shot Classification.
Siméoni, Avrithis and Chum. CVPR 2019. Local Features and Visual Words Emerge in Activations.



manifolds, indexing, and geometry

® scale up manifold search to billions
® use geometry: extend pairwise affinity from vectors to tensors

® extend to graph convolutional networks

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds- Recovering Small Objects with
Compact CNN Representations.
Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



learning while memorizing

Memory
e° o,
® e, eeeco o0
e ®qe eoocoeoe
e 0o 0 00
0000
Construction of Training process Balanced Representative
the training set fine-tuning memory updating

® category-level tasks: a “summary” of training set explicitly memorized
® instance-level tasks: training and test sets become part of a
continuously growing knowledge

® memory-based few-shot learning

Lifchitz, Avrithis, Picard and Bursuc. CVPR 2019. Dense Classification and Implanting for Few-Shot Learning.

Iscen, Tolias, Avrithis, Chum, and Schmid. arXiv 2019. Graph convolutional networks for learning with few clean and many noisy
labels.

Castro, Marin-Jimenez, Guil, Schmid and Alahari. ECCV 2018. End-to-End Incremental Learning.



on-manifold adversarial robustness

(a) regular
2) adversarial example

A on-manifold
2t Classifier’s (®) adversarial example
j Decision =22

Boundary

(©) invalid
adversarial example

e
Class Manifold “5” Tl:“f'

Decision

Boundary Class Manifold “6”
¢ adversarial defenses: “ultimate form” of regularization
® hurt on clean data, unless constrained on the manifold (7)
e generalize beyond smoothness and beyond classification
[ ]

model the manifold using true data

Stutz, Hein and Schiele. CVPR 2018. Disentangling Adversarial Robustness and Generalization.
Zhang, Avrithis, Furon and Amsaleg. JIS, in press. Smooth Adversarial Examples.
Zhang, Avrithis, Furon, Amsaleg. arXiv 2019. Walking on the Edge: Fast, Low-Distortion Adversarial Examples.
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thank you!

https://avrithis.net
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