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Abstract

We give here supplementary material that can be help-
ful in the study of our work but could not fit into our sub-
mitted paper. In particular, we include the outline of our
WMA and MAD algorithms, some additional comments on
our partitioning scheme of section 5, especially in relation
to watershed segmentation, as well as proofs of a number of
our theoretical results. The remaining proofs are lengthier
and will appear in a future publication.

Algorithm outlines
The algorithm outline of Weighted Medial Axis (WMA),
presented in section 4, is given in algorithm 1. Parameter
scale is used to prune the medial axis. We focus on removal
of discretization effects only, not on simplification. A typi-
cal value is scale = 2 (pixels). In this case proposition 4.4
guarantees that the medial axis remains connected.

Similarly, the algorithm outline of Medial Axis Decom-
position (MAD), presented in section 5, is given in algo-
rithm 2.

Comments on partitioning
Propagation in our medial axis decomposition (MAD)
scheme is equivalent to applying watershed segmentation to
the negated distance map restricted to the medial axis (i.e.
on −A(f)) with peaks as markers.

However: (a) due to group marching, complexity is lin-
ear in k, where k = |A(f)|. (b) We ensure a single point
per marker even in flat areas (plateaus), in which case this
point is chosen at random; effectively, we build the con-
nected components of the markers in parallel to propaga-
tion. (c) We construct graph G, again in parallel. (d) What
is not shown in the algorithm outline of MAD, is that given
an edge e = (u, v) generated at saddle point x, we con-
tract e and identify u with v whenever |h(u) − h(x)| ≤ 1
or |h(v) − h(x)| ≤ 1. We thereby remove discretization
effects along ridges while retaining true peaks.

Algorithm 1 Weighted Medial Axis
1: procedure MEDIAL(distance map h, source map s)
2: initialize q, r; construct seed A+ as in (5)
3: for x ∈ X do r(x)← 0; label x as far
4: for x ∈ X if x � x then label x as done
5: for x ∈ A+ do PROP(x)
6: while ¬ q.EMPTY( ) do
7: x← q.POP( ); label x as done
8: for y�x, ¬ y done do SCAN(x, y)
9: if r(x) 6= 0 for y×+x, y far do PROP(y)

10: end while
11: return residue r
12: end procedure
13:
14: procedure PROP(point x)
15: q.PUSH(x); label x as near
16: end procedure
17:
18: procedure SCAN(point x, point y)
19: ρ← res(x, y)
20: if s(x) = s(y) ∨ ρ < scale return
21: if ρ > r(y) ∧ y far then PROP(y)
22: r(x)← max(r(x), ρ); r(y)← max(r(y), ρ)
23: end procedure

As detailed in the paper, our image partitioning scheme
is implemented by invoking EGM algorithm for a second
time. Note however that due to proposition 5.1(c), we do
not actually need the distance map output in this case; all
we need is its source map output s. For this reason we use
an even faster implementation of EGM where we discard all
distance computations and all we do is source backpropa-
gation.

Proofs
Proof of Lemma 3.1 (a) → (b). Using definitions (3), (2)
and (1), it follows that if y is a source,

d(x, y) + f(y) ≤ d(x, z) + f(z) ∀z ∈ X (S1)
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Algorithm 2 Medial Axis Decomposition
1: procedure MAD(distance map h, medial axis A)
2: initialize q,G; construct Â+

3: for x ∈ A do κ(x)← ∅; label x as far
4: for x ∈ Â+ do PROP(x)
5: while ¬ q.EMPTY( ) do
6: x← q.POP( ); label x as done;
7: for y×+x, y ∈ A do SCAN(x, y)
8: if κ(x) = ∅ then κ(x)← G.VERTEX(x)
9: end while

10: return graph G
11: end procedure
12:
13: procedure PROP(point x)
14: q.PUSH(x, b−h(y)c); label x as near
15: end procedure
16:
17: procedure SCAN(point x, point y)
18: if y far then PROP(y)
19: if κ(y) = ∅ return
20: if κ(x) = ∅ then κ(x)← κ(y); return
21: if κ(x) 6= κ(y) then G.EDGE(κ(x), κ(y), h(x))
22: end procedure

for some x ∈ X , or

f(y) ≤ d(x, z)− d(x, y) + f(z) ∀z ∈ X. (S2)

Now, using the triangle inequality and the fact that
d(y, y) = 0, we derive that

d(y, y) + f(y) ≤ d(y, z) + f(z) ∀z ∈ X, (S3)

which, similarly to (S1), implies that y 3 y.
(b)→ (c). If y 3 y, then by definition (2),D(f)(y) = f(y).
(c) → (d). If D(f)(y) = f(y), then by definition (2) y ∈
Ŝ(y), or y 3 y. Suppose there is some other point z ∈
S(y), then z ∈ Ŝ(y) or z 3 y 3 y. By definition (3)
z /∈ S(y), a contradiction. Therefore Ŝ(y) = {y} implying
that S(y) = {y}.
(d)→ (e) and (d)→ (a) are straightforward. �

Proof of Lemma 3.2 Let

g(x) =

{
f(x), x ∈ S(f)
+∞, otherwise.

(S4)

By definition (1), for all x ∈ X ,

Dd(g)(x) =
∧
y∈X

d(x, y) + g(y) (S5)

=
∧

y∈S(f)

d(x, y) + f(y). (S6)

On the other hand, it follows from definitions (1), (2), (3)
that

Dd(f)(x) = d(x, s(x)) + f(s(x)), x ∈ X. (S7)

But since s(x) ∈ S(f), definition (1) for f gives

Dd(f)(x) =
∧

y∈S(f)

d(x, y) + f(y), x ∈ X. (S8)

The above imply that Dd(f) = Dd(g), where (by construc-
tion) g is uniquely determined by f |S(f), as claimed. �

Proof of Lemma 4.1 Let y ∈ S(f). By lemma 3.1,
S(y) = {y} hence |S(y)| = 1. Then y cannot be a me-
dial point: y /∈ A(f). �

Proof of Lemma 4.2 (a) Let w ∈ S(x) be a source of x
distinct from y. Considering x as an origin, define ŷ =
y − x, ŵ = w − x, and ẑ = z − x for z ∈ L(x, y). Then
ẑ = λŷ for some λ ∈ (0, 1). By lemma 4.1, vectors ŷ, ŵ, ẑ
are non-zero. Clearly,

‖ŷ‖ = ‖ẑ‖+ ‖ŷ − ẑ‖. (S9)

On the other hand,

‖ŵ‖ < ‖ẑ‖+ ‖ŵ − ẑ‖. (S10)

Here the triangle inequality is strict because otherwise we
would have ŵ = aŷ with a > 0, meaning that either w 3 y
(if a > 1) or y 3 w (if a < 1); but both cases contradict
definition (3). Then

‖ẑ − ŷ‖ − ‖ẑ − ŵ‖ < ‖ŷ‖ − ‖ŵ‖. (S11)

Adding f(y)− f(w) to both sides, it follows that

d(z, y) + f(y) < d(z, w) + f(w), (S12)

that is, w cannot be a source of z.
It remains to show that no other point u ∈ X \ S(x) is

a source of z. Suppose otherwise. Then d(z, u) + f(u) ≤
d(z, y) + f(y). Combining with (S9) and the triangle in-
equality,

d(x, u) + f(u) ≤ d(x, y) + f(y), (S13)

implying that u 3 y 3 z. Hence u is not a source of z,
which is a contradiction.

Note: L(x, y) is a special case of shortest path from
source y to medial point x. It is a line segment because
of the Euclidean space condition; in a general metric space,
it would be replaced by a geodesic.

(b) With the topology induced by metric d, N(x) con-
tains an open ball centered at x, say Bε(x). By (a) with



0 < λ < min(1, ε/‖ŷ‖), there is z = x+λ(y−x) ∈ N(x)
with unique source s(z) = y.

(c) We know that X \ A contains all points having a
unique source. By (b), given x ∈ A, there is an open set
U with x ∈ U such that U ∩ (X \ A) 6= ∅. Stated other-
wise, x is a point of closure of X \ A. Since x is arbitrary,
A ⊆ X \A. On the other hand, we know that A ⊆ A.
Therefore A ⊆ X \A ∩A = ∂A.

Note: A is not necessarily closed, but if it is,A = ∂A. Of
interest is the related concept of cut locus, which is defined
exactly as the closure of A. �

Proof of Lemma 4.3 Given an input function f , lemma 4.1
suggests that the entire image support X is partitioned into
the union of pairwise disjoint sets S(f), A(f) and P (f) =
I(f) \A(f) = X \ (S(f) ∪A(f)).

Given z ∈ P (f) with unique source y, we can fol-
low exactly the same line of reasoning as in the proof of
lemma 4.2(a) to show that all points w on the shortest
path L(z, y) also have the same unique source, S(w) =
{y}. Then, given any open line segment L(x, y) such that
z ∈ L(x, y) ⊂ P (f), we still have S(w) = {y} for all
w ∈ L(x, y); otherwise we would contradict our assump-
tion that S(z) = {y}.

Given that X is bounded, such a line segment becomes
maximal if x is either on the medial axis A(f) or on the
boundary ∂X w.r.t. domain X; x cannot be on S(f) because
this would imply contradiction x = y. Let us extend the
medial axis by

Ȧ(f) = A(f) ∪ ∂X. (S14)

Conversely to lemma 4.2(a), we conclude that P (f) con-
sists of all shortest paths from sources y to points x ∈
Ȧ(f):

P (f) =
⋃

x∈Ȧ(f)

⋃
y∈S(x)

L(x, y). (S15)

Again by lemma 4.2(a), all such sources are closure points
of P (f), therefore cannot be interior points of S(f):

U(f) =
⋃

x∈Ȧ(f)

⋃
y∈S(x)

{y} ⊆ ∂S(f). (S16)

Clearly, U(f) is the set of sources of all points in P (f) ∪
A(f) = I(f). Now, by lemma 4.1, the medial axis A(f)
is uniquely determined by the set of sources of all points in
the interior set I(f), hence by ∂S(f). �


