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Abstract

This supplementary material provides additional experi-
ments, discussion and interpretations that complement our
paper. The additional results refer to more parameters and
options, more datasets, measurements and comparisons,
and more large scale experiments.

1. More on dynamic IQ-means
A question arising in the paper is whether the algorithm

that purges clusters in dynamic IQ-means is applicable in
our case, since EGM assumes a probabilistic Gaussian mix-
ture model, while this work assumes hard assignment as
in k-means. It turns out that adequate overlaps can indeed
be found indeed under hard assignment. This is illustrated
in the small two-dimensional experiment of Fig. 1 that re-
sembles an experiment of EGM, but also shows unassigned
points, revealing the search strategy of IQ-means.

2. More comparisons
Fig. 2 shows average distortion and time measurements

just like Fig. 4 in the paper, but for Paris dataset. In par-
ticular, Fig. 2a shows that AKM and k-means remain at the
same levels of distortion while RR is higher and IQ-means
even higher. This discrepancy between RR and IQ-means
compared to SIFT1M, along with the fact that a higher num-
ber of clusters remain empty for IQ-means, is attributed to
the different feature distribution of the two datasets, which
would require a finer grid in the case of Paris. It is thus
evident that there are two different causes for increased dis-
tortion: inverted search from centroids to points (present
in both RR and IQ-means) and point quantization (present
only in IQ-means).

On the other hand, Fig. 2b is similar to the case of
SIFT1M. The ordering of methods remains the same, with
IQ-means being the fastest, by at least one order of mag-
nitude for small k. Finally, Fig. 2b is again similar to
SIFT1M, but with distortion being slightly higher for IQ-
means as discussed above. It is shown more clearly how

(a) iteration 0 (b) iteration 1

(c) iteration 2 (d) iteration 3

Figure 1. First three iterations (0 = initialization) of dynamic IQ-
means on a random dataset of n = 4000 points following a mix-
ture of 8 normal components, initialized at k = 24 with grid size
s = 64, search window w = 20, search target tX = 2, overlap
τ = 0.6. Black points: assigned; gray: unassigned; red: centroids;
blue circles: 2σ where σ is estimated standard deviation.

increased approximation affects both speed (positively) and
distortion (negatively). Again, it would be possible to im-
prove IQ-means further using a finer grid.

Fig. 3 shows a different experiment for SIFT1M. We
now fix k and vary n by clustering increasing subsets of
the dataset. Otherwise distortion and time measurements
remain the same as in Fig. 2 above and Fig. 4 in the paper.
Now both distortion and time are increasing with n for all
methods. Again, as shown in Fig. 3a, distortion is similar
for k-means and AKM, higher for RR and slightly higher
for IQ-means. The latter is only due to some clusters being
empty for IQ-means, because otherwise RR and IQ-means
exhibit the same behavior in terms of distortion as shown in
Fig. 4 in the paper.

Fig. 3b reveals another interesting finding: while all
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(a) average distortion vs. k (b) time vs. k (c) average distortion vs. time
Figure 2. Average distortion and total time for 20 iterations on Paris for varying number of clusters k. Time for IQ-means includes encoding
of data points that is constant in k, but not codebook learning.
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(a) average distortion vs. n (b) time vs. n (c) average distortion vs. time
Figure 3. Average distortion and total time for 20 iterations on SIFT1M for k = 104 and varying number of data points n. Time for
IQ-means includes encoding of data points that is linear in n, but not codebook learning.

methods take more time as n increases, IQ-means remains
constant. This is the result of quantizing all points on a fixed
grid regardless of n and working on cell distributions alone.
The same effect is evident in Fig. 3c, where increased n
causes only an increase of distortion for IQ-means, while
time remains fixed. The gain in speed varies up to more
than two orders of magnitude for k-means.

3. More large scale experiments

Following Section 5.3 in the paper, we report here some
further statistics on clustering the YFCC100M and Paris
datasets.

Figure 4 is a superset of Table 3 in the paper. We report
times per iteration for IQ-means and dynamic IQ-means for
different number of clusters and for different values of the
overlap parameter τ . The time per iteration for IQ-means
grows linearly in the initial number of clusters requested,
while clustering in k = 500k clusters takes about 11 min-
utes per iteration. Further speed-up can be achieved by us-
ing dynamic IQ-means, where clustering in k = 500k cen-
troids takes about 9 minutes per iteration with τ = 0.6 and
results in k′ = 356k final clusters.

As described in Section 5.1 of the paper, we extract noisy
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Figure 4. Clustering time per iteration for IQ-means and dynamic
IQ-means on the YFCC100M dataset.

labels through automatic image classification. After clus-
tering with IQ-means, for each of the clusters we count how
many times each label appears in the images of that cluster.
If we keep only the most frequent label for each cluster, we
can plot the number of clusters in which a specific label is
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Figure 5. The “most popular class” frequencies. Showing all classes that appear in more than 100 clusters. k = 105.

the “most popular”. In Figure 5 we show exactly this for the
top labels, i.e. all labels that are the most popular label in at
least 100 clusters. As expected, more generic labels like
building, sport and people are the most frequent ones, but
also specific animals or objects (e.g. dog or bottle) appear
as most frequent labels in hundreds of clusters each.

Finally, in Figure 6 we show representative images for
some of the landmarks of the Paris dataset. We can get such
a diverse set without any extra computation, by choosing
one image from each one of the clusters the landmark ap-
pears in. In particular, we first cluster the dataset with IQ-
means and k = 103. We then select the 12 clusters that con-
tain the most images for each landmark and randomly pick
one to display. We see that in most cases there is visible
viewpoint, scale or lighting change between images from
different clusters, making this sample diverse, despite the
approximate nature of our clustering and the global features
used.



Figure 6. One image from each of the 12 most popular clusters for a number of the Paris dataset landmarks when k = 103.


