Supplementary material of "Asymmetric metric learning for knowledge transfer"

Mateusz Budnik Yannis Avrithis
Inria, Univ Rennes, CNRS, IRISA

A. More results

Complete contrastive-regression ablation Here, we present the full version of the results of the ablation from Table 2, for all four student-teacher combinations. Apart from mAP , we also report $\mathrm{mP} @ 10$. Table 5 and Table 6 present the symmetric and asymmetric testing results, respectively. All results agree with the results of Table 2. For symmetric testing, contrastive loss with a single positive and no negatives is again the worst. The addition of the anchor as a positive for itself as well as the negatives improve the results substantially. Contr ${ }^{+}$, which uses both, performs best in most cases with the exception of VGG16 \rightarrow EfficientNet. For asymmetric testing, regression is the best. The inclusion of the anchor as positive for itself gives better results than without it.

Complete results including mP@10 Table 7 supplements Table 3 by adding mP@10 scores for all the symmetric testing experiments. Similarly, Table 8 adds mP@10 results to all asymmetric testing experiments. Overall, the conclusions drawn based on mAP apply to $\mathrm{mP} @ 10$ too.

Experiments on $\mathcal{R} 1 \mathbf{M}$ distractors Table 9 and Table 10 report symmetric and asymmetric testing results on both $\mathcal{R O x f o r d 5 k}$ and \mathcal{R} Paris6k with the addition of $\mathcal{R} 1 \mathrm{M}$ distractors. The structure of the tables mirrors exactly that of Table 7 and Table 8, which includes both the mAP and $\mathrm{mP} @ 10$ metrics. This is far more challenging than the standard setting. Therefore, results are lower across the board. Besides this observation, the general conclusions from the previous experiments still apply here, with the gain of our approach being even more pronounced.

In symmetric testing, student models trained with Contr ${ }^{+}$ and contrastive give the best results, often surpassing the performance of the teacher model. For ResNet 101 teacher in particular, EfficientNet student outperforms the teacher in all cases, with a gain of up to $3.3 \% \mathrm{mAP}$ for $\mathcal{R} \mathrm{Oxf}+\mathcal{R} 1 \mathrm{M}$, while MobileNetV2 is on par or outperforms the teacher in certain cases, with a gain of up to $2.1 \% \mathrm{mAP}$ for $\mathcal{R} \mathrm{Oxf}+\mathcal{R} 1 \mathrm{M}$. In asymmetric testing, models trained with regression have the highest performance, followed by Contr ${ }^{+}$. However, the gap
in performance compared with symmetric testing is even greater in the presence of $\mathcal{R} 1 \mathrm{M}$.

Table 5. Complete contrastive-regression ablation: symmetric testing on \mathcal{R} Oxford5k and \mathcal{R} Paris6k [52]. Lab: using labels in student model training. Pos, NEG: Using positives, negatives. Self: Using anchor (by teacher) as positive for itself (by student). Using asymmetric similarity (3) at training in all cases. Best mAP highlighted per teacher-student pair. GeM pooling and learned whitening [54] used in all cases.

Student	d	TEACHER	LAB	Loss	SELF				Medium				HARD			
						Pos	NEG	Mining		$\begin{array}{r} \text { xford5k } \\ \mathrm{mP@} @ 10 \end{array}$	$\mathcal{R P a}$	$\begin{aligned} & \text { aris6k } \\ & \text { mP@10 } \end{aligned}$	$\underset{\mathrm{RAP}}{\mathcal{R O X f}}$	$\begin{aligned} & \text { ford5k } \\ & \text { mP@10 } \end{aligned}$	$\underset{\mathrm{mAP}}{\mathcal{R P}}$	$\begin{aligned} & \text { aris6k } \\ & \mathrm{mP} @ 10 \end{aligned}$
MobileNetV2	512	VGG16	\checkmark	Contr (4)		\checkmark	\checkmark	hard	38.3	53.7	49.8	84.4	18.4	32.8	23.8	55.7
			\checkmark	Contr (4)	\checkmark	\checkmark	\checkmark	hard	42.9	59.1	55.9	88.4	22.6	35.2	31.4	66.3
			\checkmark	Contr (4)		\checkmark		hard	34.1	48.9	47.3	82.0	17.0	25.6	24.5	53.4
			\checkmark	Contr (4)	\checkmark	\checkmark		hard	38.2	52.0	52.2	86.0	15.3	26.2	28.9	64.1
				Reg (7)	\checkmark			-	48.0	64.3	57.9	90.7	26.5	37.9	32.6	67.1
	2048	ResNet101	\checkmark	Contr (4)		\checkmark	\checkmark	hard	32.3	49.7	51.5	83.3	9.6	18.3	28.2	62.4
			\checkmark	Contr (4)	\checkmark	\checkmark	\checkmark	hard	47.1	65.4	61.5	92.6	21.8	33.1	37.7	74.1
			\checkmark	Contr (4)		\checkmark		hard	27.3	38.4	47.7	80.9	8.4	15.3	24.3	50.6
			\checkmark	Contr (4)	\checkmark	\checkmark		hard	40.5	58.2	55.8	87.6	17.4	26.3	29.9	63.4
				Reg (7)	\checkmark			-	49.2	67.9	65.0	92.6	23.3	36.9	40.7	72.1
EfficientNet-B3	512	VGG16	\checkmark	Contr (4)		\checkmark	\checkmark	hard	43.8	74.7	24.9	39.3	23.0	51.3	6.1	15.6
			\checkmark	Contr (4)	\checkmark	\checkmark	\checkmark	hard	44.7	61.5	58.0	93.3	23.9	37.9	32.4	69.1
			\checkmark	Contr (4)		\checkmark		hard	32.4	45.4	47.8	84.4	14.1	22.0	25.8	56.3
			\checkmark	Contr (4)	\checkmark	\checkmark		hard	41.6	57.5	53.9	90.1	20.3	30.6	30.2	64.0
				Reg (7)	\checkmark			-	49.4	70.0	58.2	92.4	26.0	39.6	33.0	70.6
	2048 ResNet101		\checkmark	Contr (4)		\checkmark	\checkmark	hard	37.4	56.8	57.4	90.4	10.9	24.6	33.7	65.9
			\checkmark	Contr (4)	\checkmark	\checkmark	\checkmark	hard	45.2	67.2	63.7	92.1	19.6	35.5	40.9	73.6
			\checkmark	Contr (4)		\checkmark		hard	30.8	44.5	51.2	83.7	10.2	16.1	27.8	57.0
			\checkmark	Contr (4)	\checkmark	\checkmark		hard	40.1	56.7	59.1	91.1	14.6	24.3	35.0	71.0
				Reg (7)	\checkmark			-	52.9	71.8	65.2	93.3	27.8	41.5	42.4	71.9

Table 6. Complete contrastive-regression ablation: asymmetric testing on \mathcal{R} Oxford5k and \mathcal{R} Paris6k [52]. LAB: using labels in student model training. Pos, NEG: Using positives, negatives. SELF: Using anchor (by teacher) as positive for itself (by student). Using asymmetric similarity (3) at training in all cases. Best mAP highlighted per teacher-student pair. GeM pooling and learned whitening [54] used in all cases.

Student	d	TEACHER	LAB	Loss	Mining	ASYM	Medium				HARD			
								Oxf		RPar		Oxf		Par
							mAP mP@10 mAP mP@10 mAP mP@ 10 mAP mP @ 10							
VGG16	512		\checkmark	Contr (4)	hard		60.9	81.9	69.3	97.4	32.9	50.9	44.2	83.1
ResNet101	2048		\checkmark	Contr (4)	hard		65.4	85.7	76.7	98.4	40.1	56.6	55.2	87.7
MobileNetV2	512		\checkmark	Contr (4)	hard		53.6	75.8	66.4	96.7	28.8	42.9	39.7	79.0
	2048		\checkmark	Contr (4)	hard		56.1	79.0	68.5	98.1	30.3	46.0	42.0	82.6
EfficientNet-B3	512		\checkmark	Contr (4)	hard		53.8	76.6	70.9	96.6	26.2	42.3	46.0	83.7
	2048		\checkmark	Contr (4)	hard		59.6	86.1	75.1	95.1	33.3	46.0	51.9	87.6
MobileNetV2	512	VGG16	\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	57.3	78.4	68.4	96.1	31.5	46.9	42.2	78.9
			\checkmark	Contr (4)	hard	\checkmark	57.3	77.1	67.1	95.7	31.1	47.3	41.3	80.4
			\checkmark	Triplet (5)	hard	\checkmark	37.0	55.2	62.7	94.4	11.6	23.0	36.4	73.7
			\checkmark	MS (6)	hard	\checkmark	36.8	55.2	62.8	94.4	11.5	22.2	36.5	75.0
				Reg (7)	-	\checkmark	53.3	75.1	67.5	95.6	28.9	43.6	40.9	81.3
				RKD (8)	random		46.2	68.1	64.3	94.7	21.8	32.8	37.6	72.3
				DR (9)	random		45.2	66.5	60.6	92.1	24.6	34.9	33.1	74.1
	2048	ResNet101	\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	63.2	84.4	75.0	98.0	37.9	52.1	52.0	87.3
			\checkmark	Contr (4)	hard	\checkmark	60.8	81.7	72.1	97.3	36.1	50.4	47.6	85.1
			\checkmark	Triplet (5)	hard	\checkmark	45.5	66.1	68.0	96.1	19.6	33.5	43.4	80.6
			\checkmark	MS (6)	hard	\checkmark	44.5	65.4	68.1	96.1	17.9	32.1	43.2	80.1
				Reg (7)	-	\checkmark	59.8	80.3	73.1	96.9	35.7	49.4	49.5	84.7
				RKD (8)	random		56.1	79.3	69.8	96.3	31.8	46.0	44.2	82.3
				DR (9)	random		43.4	65.6	59.3	93.4	20.8	31.8	31.6	69.0
EfficientNet-B3	512	VGG16	\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	56.9	75.6	69.0	96.0	31.1	46.7	43.5	80.9
			\checkmark	Contr (4)	hard	\checkmark	56.8	75.7	70.4	96.3	31.2	43.9	45.4	81.7
			\checkmark	Triplet (5)	hard	\checkmark	33.7	48.5	64.6	94.4	8.0	20.1	40.3	76.1
			\checkmark	MS (6)	hard	\checkmark	33.9	49.5	64.9	94.4	8.1	20.4	40.6	76.9
				Reg (7)	-	\checkmark	55.0	75.0	69.4	96.6	27.1	42.3	44.5	80.4
				RKD (8)	random		51.6	71.4	67.6	95.3	26.2	38.5	41.7	81.1
				DR (9)	random		52.4	72.1	65.2	95.4	26.5	38.1	37.2	73.7
	2048 ResNet101		\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	66.8	84.7	77.1	98.6	42.5	58.7	55.5	87.9
			\checkmark	Contr (4)	hard	\checkmark	66.3	85.3	77.4	98.4	41.3	58.9	55.5	88.3
			\checkmark	Triplet (5)	hard	\checkmark	39.5	57.3	69.4	95.9	11.6	24.3	45.8	81.1
			\checkmark	MS (6)	hard	\checkmark	39.9	57.4	69.7	95.7	11.7	24.2	46.2	81.4
				Reg (7)	-	\checkmark	64.9	83.7	74.4	97.7	40.5	55.9	52.4	87.1
				RKD (8)	random		56.3	75.8	73.0	98.4	30.5	46.4	50.4	82.3
				DR (9)	random		52.2	72.1	66.3	95.4	27.3	39.9	40.1	79.0

Table 7. Symmetric testing on \mathcal{R} Oxford5k and \mathcal{R} Paris6k [52]. Lab: using labels in student model training. Asym: Using asymmetric similarity (3) at training. Best mAP highlighted per teacher-student pair. GeM pooling and learned whitening [54] used in all cases.

Student	d	TEACHER	LAB	Loss	Mining	ASYM	Medium				HARD			
								Oxf		Par		Oxf		Par
							mAP mP@ 10 mAP mP @ $10 \mathrm{mAP} \mathrm{mP} @ 10 \mathrm{mAP} \mathrm{mP}$ @ 10							
VGG16	512		\checkmark	Contr (4)	hard		60.9	81.9	69.3	97.4	32.9	50.9	44.2	83.1
ResNet101	2048		\checkmark	Contr (4)	hard		65.4	85.7	76.7	98.4	40.1	56.6	55.2	87.7
MobileNetV2	512		\checkmark	Contr (4)	hard		53.6	75.8	66.4	96.7	28.8	42.9	39.7	79.0
	2048		\checkmark	Contr (4)	hard		56.1	79.0	68.5	98.1	30.3	46.0	42.0	82.6
EfficientNet-B3	512		\checkmark	Contr (4)	hard		53.8	76.6	70.9	96.6	26.2	42.3	46.0	83.7
	2048		\checkmark	Contr (4)	hard		59.6	86.1	75.1	95.1	33.3	46.0	51.9	87.6
MobileNetV2	512	VGG16	\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	42.9	59.1	55.9	88.4	22.6	35.2	31.4	66.3
			\checkmark	Contr (4)	hard	\checkmark	38.3	53.7	49.8	84.4	18.4	32.8	23.8	55.7
			\checkmark	Triplet (5)	hard	\checkmark	1.8	0.0	4.3	1.3	0.7	0.0	2.8	1.4
			\checkmark	MS (6)	hard	\checkmark	1.9	0.0	4.3	1.6	0.8	0.0	2.7	1.6
				Reg (7)	-	\checkmark	48.0	64.3	57.9	90.7	26.5	37.9	32.6	67.1
				RKD (8)	random		2.0	0.0	4.1	1.0	0.8	0.0	2.6	1.0
				DR (9)	random		1.7	0.0	3.8	0.3	0.7	0.0	2.4	0.3
	2048	ResNet101	\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	47.1	65.4	61.5	92.6	21.8	33.1	37.7	74.1
			\checkmark	Contr (4)	hard	\checkmark	32.3	49.7	51.5	83.3	9.6	18.3	28.2	62.4
			\checkmark	Triplet (5)	hard	\checkmark	1.3	0.0	3.7	1.4	0.7	0.0	2.4	1.4
			\checkmark	MS (6)	hard	\checkmark	1.4	0.3	3.6	1.0	0.7	0.3	2.3	0.9
				Reg (7)	-	\checkmark	49.2	67.9	65.0	92.6	23.3	36.9	40.7	72.1
				RKD (8)	random		1.6	1.3	4.1	2.3	0.8	1.1	2.5	1.6
				DR (9)	random		1.5	0.4	3.7	3.7	0.6	0.3	2.3	2.4
EfficientNet-B3	512	VGG16	\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	44.7	61.5	58.0	93.3	23.9	37.9	32.4	69.1
			\checkmark	Contr (4)	hard	\checkmark	43.8	74.7	24.9	39.3	23.0	51.3	6.1	15.6
			\checkmark	Triplet (5)	hard	\checkmark	1.4	0.0	4.0	0.0	0.6	0.0	2.5	0.0
			\checkmark	MS (6)	hard	\checkmark	1.4	0.0	3.9	0.0	0.6	0.0	2.5	0.0
				Reg (7)	-	\checkmark	49.4	70.0	58.2	92.4	26.0	39.6	33.0	70.6
				RKD (8)	random		1.3	0.0	3.8	0.7	0.6	0.0	2.5	0.3
				DR (9)	random		1.4	0.0	3.8	1.3	0.6	0.0	2.5	1.0
	2048 ResNet101		\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	45.2	67.2	63.7	92.1	19.6	35.5	40.9	73.6
			\checkmark	Contr (4)	hard	\checkmark	37.4	56.8	57.4	90.4	10.9	24.6	33.7	65.9
			\checkmark	Triplet (5)	hard	\checkmark	1.5	0.7	4.0	1.6	0.7	0.7	2.5	0.9
			\checkmark	MS (6)	hard	\checkmark	1.5	0.7	4.0	1.4	0.7	0.7	2.4	1.0
				Reg (7)	-	\checkmark	52.9	71.8	65.2	93.3	27.8	41.5	42.4	71.9
				RKD (8)	random		1.6	0.7	3.8	1.6	0.7	0.4	2.4	0.7
				DR (9)	random		2.0	2.4	3.5	0.4	0.7	0.3	2.2	0.4

Table 8. Asymmetric testing on \mathcal{R} Oxford5k and \mathcal{R} Paris6k [52]. LaB: using labels in student model training. Asym: Using asymmetric similarity (3) at training. Best mAP highlighted per teacher-student pair. GeM pooling and learned whitening [54] used in all cases. The results without a teacher in the top block correspond to symmetric testing (same as in Table 7) and are only added here for convenience.

Student	d	TEACHER	LAB	Loss	Mining Asym		Medium				$\frac{\text { HARD }}{\mathcal{R} \mathrm{Oxf}+\mathcal{R} 1 \mathrm{M} \operatorname{RPar}+\mathcal{R} 1 \mathrm{M}}$							
							$\mathcal{R O x f}+\mathcal{R} 1 \mathrm{M} \mathcal{R P a r}+\mathcal{R} 1 \mathrm{M} \mathcal{R O x f}+\mathcal{R} 1 \mathrm{M} \mathcal{R P a r}+\mathcal{R} 1 \mathrm{M}$ mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10											
VGG16	512		\checkmark	Contr (4)	hard		42.6	68.1	45.4	94.1	19.0	29.4	19.1	64.9				
ResNet101	2048		\checkmark	Contr (4)	hard		45.2	71.1	52.3	95.3	19.9	34.9	24.7	73.3				
MobileNetV2	512		\checkmark	Contr (4)	hard		34.1	59.2	38.7	91.0	14.2	22.3	14.1	51.0				
	2048		\checkmark	Contr (4)	hard		37.4	66.2	42.0	91.0	17.6	28.1	17.2	57.7				
EfficientNet-B3	512		\checkmark	Contr (4)	hard		34.6	59.0	43.4	92.9	11.8	21.1	17.6	63.9				
	2048		\checkmark	Contr (4)	hard		36.6	63.1	45.4	94.4	17.4	23.7	19.2	65.4				
MobileNetV2	512	VGG16	\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	35.1	59.3	39.8	90.1	17.0	23.1	13.6	52.0				
			\checkmark	Contr (4)	hard	\checkmark	36.7	60.1	37.9	90.0	16.4	24.0	13.3	51.4				
			\checkmark	Triplet (5)	hard	\checkmark	17.1	34.4	30.9	85.6	2.5	5.4	9.5	40.1				
			\checkmark	MS (6)	hard	\checkmark	17.1	33.5	31.0	85.9	2.4	5.4	9.5	39.7				
				Reg (7)	-	\checkmark	32.6	56.5	37.0	89.7	13.5	21.9	11.8	47.0				
				RKD (8)	random		29.2	51.8	34.1	85.7	13.0	17.4	9.5	39.7				
				DR (9)	random		25.4	46.5	32.1	84.7	12.6	16.9	8.2	37.7				
	2048	ResNet101	\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	45.1	71.6	47.5	94.9	22.0	33.1	18.8	62.4				
			\checkmark	Contr (4)	hard	\checkmark	42.1	65.7	45.9	93.7	20.8	30.9	18.4	62.3				
			\checkmark	Triplet (5)	hard	\checkmark	28.3	50.4	42.9	90.9	5.5	12.4	15.7	51.7				
			\checkmark	MS (6)	hard	\checkmark	24.8	46.9	39.5	88.4	6.4	11.9	14.2	51.0				
				Reg (7)	-	\checkmark	41.5	65.8	45.9	92.1	18.6	30.7	18.1	59.1				
				RKD (8)	random		38.1	65.0	43.7	92.4	16.7	25.9	15.6	54.4				
				DR (9)	random		23.6	45.7	29.6	83.6	11.1	13.8	7.9	35.7				
EfficientNet-B3	512	VGG16	\checkmark	Contr ${ }^{+}$(10)		\checkmark	35.7	58.7	42.3	91.9	13.8	23.2	15.2	55.3				
			\checkmark	Contr (4)	hard	\checkmark	36.8	61.1	41.6	90.6	16.4	24.9	15.6	53.4				
			\checkmark	Triplet (5)	hard	\checkmark	11.3	25.0	28.8	79.9	0.2	1.3	11.2	48.1				
			\checkmark	MS (6)	hard	\checkmark	11.4	25.3	29.1	80.1	0.2	1.3	11.3	48.9				
				Reg (7)	-	\checkmark	35.5	61.0	40.3	90.9	15.8	23.6	14.0	53.1				
				RKD (8)	random		26.1	46.9	39.5	90.3	6.7	12.6	13.6	50.6				
				DR (9)	random		25.5	47.8	30.7	85.9	5.8	11.9	7.9	37.3				
	2048 ResNet101		\checkmark	Contr ${ }^{+}$(10)	hard	\checkmark	47.3	72.3	51.7	96.6	23.2	37.6	23.5	69.0				
			\checkmark	Contr (4)	hard	\checkmark	46.4	72.1	52.7	96.7	22.0	34.0	25.0	70.3				
			\checkmark	Triplet (5)	hard	\checkmark	16.2	31.6	35.3	84.0	0.5	2.3	14.9	53.3				
			\checkmark	MS (6)	hard	\checkmark	16.3	32.1	35.9	84.0	0.5	2.4	15.1	53.9				
				Reg (7)	-	\checkmark	45.9	73.5	49.3	96.0	21.7	35.4	20.9	66.0				
				RKD (8)	random		38.4	63.0	49.4	95.6	16.6	25.9	21.5	69.3				
				DR (9)	random		29.1	49.7	35.8	88.4	9.8	14.6	10.3	43.3				

Table 9. Symmetric testing on \mathcal{R} Oxford5k and \mathcal{R} Paris6k [52] with $\mathcal{R} 1 \mathrm{M}$ distractors. Lab: using labels in student model training. Asym: Using asymmetric similarity (3) at training. Best mAP highlighted per teacher-student pair. GeM pooling and learned whitening [54] used in all cases.

Table 10. Asymmetric testing on $\mathcal{R} O x f o r d 5 \mathrm{k}$ and \mathcal{R} Paris6k [52] with $\mathcal{R} 1 \mathrm{M}$ distractors. LaB: using labels in student model training. Asym: Using asymmetric similarity (3) at training. Best mAP highlighted per teacher-student pair. GeM pooling and learned whitening [54] used in all cases. The results without a teacher in the top block correspond to symmetric testing (same as in Table 9) and are only added here for convenience.

