
Supplementary Material of
“Iterative label cleaning for transductive and semi-supervised

few-shot learning”

Michalis Lazarou1 Tania Stathaki1 Yannis Avrithis2
1Imperial College London

2Inria, Univ Rennes, CNRS, IRISA

A. Datasets

miniImageNet This is a widely used few-shot image clas-
sification dataset [61, 49]. It contains 100 randomly sampled
classes from ImageNet [28]. These 100 classes are split
into 64 training (base) classes, 16 validation (novel) classes
and 20 test (novel) classes. Each class contains 600 exam-
ples (images). We follow the commonly used split proposed
in [49]. All images are resized to 84× 84.

tieredImageNet This is also sampled from ImageNet [28]
but has a hierarchical structure. Classes are partitioned into
34 categories, organized into 20 training, 6 validation and 8
test categories, containing 351, 97 and 160 classes, respec-
tively. This ensures that training classes are semantically
distinct from test classes, which is more realistic. We follow
the common split of [9]. Again, all images are 84× 84.

CUB This is a fine-grained classification dataset consist-
ing of 200 classes, each corresponding to a bird species.
We follow the split defined by [10, 15], with 100 training,
50 validation and 50 test classes. To compare fairly with
competitors, we use bounding boxes on ResNet features fol-
lowing [60] to compare with [63] but we do not use bounding
boxes on WRN [52] features to compare with [19].

CIFAR-FS This dataset is derived from CIFAR-100 [27],
consisting of 100 classes with 600 examples per class. We
follow the split provided by [10], with 64 training, 16 valida-
tion and 20 test classes. To compare fairly with competitors,
we use the original image resolution of 32×32 on WRN fea-
tures to compare with [19] but we resize images to 84× 84
on ResNet features to compare with [63].

B. Feature pre-processing

ResNet-12A ResNet-12A is the pre-trained backbone net-
work used in [63]. For all of our transductive and semi-
supervised experiments using this network, we adopt exactly
the same pre-processing as [63], which is ℓ2-normalization
on the output features.

WRN-28-10 WRN-28-10 is the pre-trained network used
in [38] and [19]. To provide fair comparisons with PT+MAP
[19] we adopt exactly the same pre-processing as [19]. In
the transductive experiments, we apply power transform,
ℓ2-normalization and centering on the output features. In
the semi-supervised experiments, we applied centering by
calculating the mean and variance from the support set, S,
and the unlabeled set, U , not taking into consideration the
query set, Q, since this is an inductive setting.

ResNet-12B ResNet-12B is the pre-trained network used
in MCT [29]. For the experiments in Table 6, we
adopt exactly the same pre-processing as [29], that is, ℓ2-
normalization on the output features.

C. Hyperparameters
Table 11 shows the best hyperparameters k (1) and

α (4) for every dataset, network and number of support
examples per class K ∈ {1, 5}. The hyperparameters
are optimized on the validation set separately for each ex-
periment. We carried out experiements in the transduc-
tive setting for k ∈ {5, 8, 10, 15, 20, 25, 30, 40, 50, 60} and
α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and select the com-
bination resulting in the best mean validation accuracy. In
the semi-supervised setting, we use the same optimal values.

D. Confidence weights
The Sinkhorn-Knopp algorithm iteratively normalizes a

M ×N positive matrix P to a row-wise sum p ∈ RM and
column-wise sum q ∈ RN . We experiment with two ways
of setting the value of p:

1. Uniform. Interpreting the i-th row of P as a class
probability distribution for the i-th query, it should be
normalized to one, such that pi = 1 uniformly.

2. Entropy. Because we do not have the same confidence
for each prediction, we use the entropy of the predicted

1

PARAM mIN tIN CFS CUB

K (shot) 1 5 1 5 1 5 1 5

ResNet-12A

k (1) 15 25 15 60 15 15 10 8
α (4) 0.8 0.4 0.5 0.8 0.8 0.4 0.6 0.6

ResNet-12B

k (1) 15 15 - - - - - -
α (4) 0.9 0.9 - - - - - -

WRN-28-10

k (1) 20 30 20 20 20 25 25 25
α (4) 0.8 0.2 0.8 0.8 0.4 0.5 0.2 0.5

Table 11. Selected hyperparameters. mIN: miniImageNet. tIN:
tieredImageNet. CFS: CIFAR-FS.

METHOD RESNET-12A WRN-28-10
1-shot 5-shot 1-shot 5-shot

uniform 69.79±0.99 79.82±0.55 83.05±0.79 88.82±0.42

entropy 66.94±1.01 78.34±0.58 81.05±0.90 88.43±0.44

Table 12. Comparison between ways of setting confidence weights
p; transductive inference on miniImageNet. Uniform: pi = 1.
Entropy: pi = ωi (16).

class probability distribution of each example to quan-
tify its uncertainty. Following [22], we associate to
each example xL+i for i ∈ [M] a weight

 \omega _i \defn 1 - \frac {H(\mathbf {\hat {z_i}})}{\log {(N)}}, \label {eq:entropy}

 (16)

where N is the number of classes and ẑi is the
ℓ1-normalized i-th row of Z (4), that is, ẑij :=

zij/
∑N

k=1 zik. We then set the confidence weights
pi = ωi. Note that ωi takes values in [0, 1] because
log(N) is the maximum possible entropy.

Given p and assuming balanced classes, q is defined
by (7), that is, qj = 1

N

∑M
i=1 pi for j ∈ [N]. In the special

case of pi = 1, this simplifies to qj =
M
N .

Table 12 compares the two approaches. Even though us-
ing non-uniform confidence weights is a reasonable choice,
uniform weights are superior in all settings. This can be
attributed to the fact that examples with small weight tend to
be ignored in the balancing process, hence their class distri-
bution and consequently their predictions are determinded
mostly by other examples with large weight. For this rea-
son, examples with small weight may get more incorrect
predictions in the case of entropy.

METHOD INFERENE TIME

LR+ICI [63] 0.89
PT+MAP [19] 0.57
iLPC 1.20

Table 13. Average inference time (in seconds) for the 1-shot tasks
in miniImageNet dataset.

E. Inference time
We conduct inference time experiments to investigate

the computational efficiency of our iLPC compared with
PT+MAP [19] and LR+ICI [63]. Using the WRN-28-10
backbone, we calculate the inference time required for a
single 5-way, 1-shot task, averaged over 1000 tasks. For
each task there are 15 queries per class. The results can be
seen on Table 13.

F. Flaws in evaluation
Throughout our investigations we observed that compar-

isons are commonly published that are not under the same
settings. In this section we highlight such problems.

1. In multiple works such as [51, 19, 65, 11], comparisons
between state-of-the-art methods are made without ex-
plicitly differentiating between inductive and transduc-
tive methods. This is unfair since transductive methods
perform better by leveraging query data.

2. Comparisons use different networks without mention-
ing so. For example, Table 1 of [66] does not indicate
what network each method uses. [66] uses WRN-28-10,
while [36] uses a 4-layer convolutional network.

3. In the semi-supervised setting, comparisons use differ-
ent numbers of unlabelled data without mentioning so.
In Table 4 of [51] for example, [51] uses 100 unlabelled
examples while [32] uses 30 for 1-shot and 50 for 5-
shot, [50] and [36] use 20 for 1-shot and 20 for 5-shot.
In Table 1 of [63], the best model of [63] uses an 80/80
split for 1/5-shot while other methods such as [32] use
a 30/50 split. In Table 1 of [66], [66] uses 100 or 200
unlabelled examples while [50, 36] use 20/20 split for
1/5-shot.

4. Some methods use different dataset settings when com-
paring with other methods without explicitly stating so.
In Table 1 of [63] for instance, [63] uses the bounding
box provided for CUB while other methods such as
[10, 31] do not.

5. Comparisons using the same network is made but this
network has been trained using a different training
regimes. Unless the novelty of the work lies in the

training regime, this is unfair. As shown in [38], a
better training regime can increase the performance
significantly.

6. There are several different variants of the benchmark
datasets, coming from different sources. The two most
common variants are [10], which uses original image
files, and [31], which uses pre-processed tensors stored
in pkl files. Testing a network on a different variant
than the one it was trained on may result in performance
drops as large as 5%.

We believe that highlighting these evaluation flaws will
help researchers avoid making such mistakes and move to-
wards a fairer evaluation. We encourage the community to
compare different methods against the same settings and if
otherwise, state clearly the differences. As a contribution
towards a fairer evaluation, we intend to make our code pub-
licly available along with the pre-trained networks used in
this work.

