A *E*₈ LATTICE CODEBOOK

Other than the product quantization codebook, we also use the *E*8 lattice as a codebook. The *E*8 lattice is a special lattice in \mathbb{R}^8 that is not data-dependent and does not need training. Due to its definition, the *E*8 lattice only deals with 8-dimensional vectors. This is not convenient for input images, but we do use it on features, flattening each patch tensor and decomposing it into 8-dimensional subvectors. The parameter *s* controlling the scale of the lattice determines the density of codewords. We let $s \in \{0.1, 0.2, \dots, 0.9\}$.

Results As shown in Figure 11, the behavior is similar to PQ codebooks, in the sense that earlier layers work better and a fine codebook (small *s*) preserves original accuracy but loses in adversarial accuracy, as if patch replacement missing (bottom right). Since the *E*8 lattice does not need training, it can be used to quickly explore the properties of patch replacement. However, the best *E*8 codebook for layer 1 is worse (original 68.1%, adversarial 50.2%) than the best PQ codebook for layer 1 (original 65.7%, adversarial 53.7%) in Figure 5. Replacement strategies can partially recover

original accuracy but not adversarial accuracy. Hence, after quick exploration, we switch to PQ codebooks for performance.

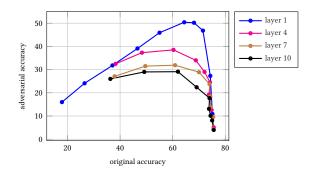


Figure 11: Effect of *E*8-lattice codebook quality, controlled by scale parameter *s*, applying patch replacement on different layers independently, using the plain strategy. We plot accuracy for varying *s* in the same curve per layer.

Method	Ori	PGD [19]			DDN [28]			BPDA [2]		
	Acc	Acc	P_{suc}	\overline{D}	Acc	P_{suc}	\overline{D}	Acc	P_{suc}	\overline{D}
Baseline	75.7	3.80	1.00	3.12	0.10	1.00	0.53	3.80	1.00	3.12
Patch replacement (ours)	71.8	46.4	0.83	7.21	66.0	0.08	0.57	48.3	0.89	12.89
Adv. training [19]	45.9	44.3	0.65	3.81	19.0	0.58	0.32	_	-	-
Bit3 [8]	64.7	32.9	0.98	6.30	55.1	0.15	0.49	0.9	1.00	1.00
Bit5 [8]	74.9	6.50	1.00	3.81	18.9	0.75	0.53	1.9	1.00	1.00
Ms2 [36]	74.2	26.5	0.92	5.62	47.9	0.33	0.51	3.3	1.00	1.76
Ms3 [36]	71.8	34.2	0.84	5.45	55.6	0.23	0.53	1.6	1.00	1.25
Pixel deflection [23]	73.2	31.0	1.00	6.70	58.6	0.20	0.53	1.3	1.00	0.89

Table 3: Original accuracy, adversarial accuracy, success rate (P_{suc}) and average distortion (\overline{D}) for combinations of defenses (adversarial training and transformation-based) and attacks, including gray-box (FGSM, BIM, PGD, DDN) and white-box (BPDA).