
Supplementary Material of
“Tensor feature hallucination for few-shot classification”

Michalis Lazarou1 Tania Stathaki1 Yannis Avrithis2
1Imperial College London

2Athena RC

A. Datasets
miniImageNet This is a widely used few-shot image clas-
sification dataset [65, 50]. It contains 100 randomly sam-
pled classes from ImageNet [30]. These 100 classes are
split into 64 training (base) classes, 16 validation (novel)
classes and 20 test (novel) classes. Each class contains 600
examples (images). We follow the commonly used split
provided by [50].

CUB This is a fine-grained image classification dataset
consisting of 200 classes, each corresponding to a bird
species. We follow the split defined by [6, 19], with 100
training, 50 validation and 50 test classes.

CIFAR-FS This dataset is derived from CIFAR-100 [29],
consisting of 100 classes with 600 examples per class. We
follow the split provided by [6], with 64 training, 16 valida-
tion and 20 test classes.

When using ResNet-18 as a backbone network, images
are resized to 224 × 224 for all datasets, similarly to other
data augmentation methods [34, 8, 7, 40]. When using
ResNet-12, they are resized to 84× 84, similarly to [70].

RECONSTRUCTOR NETWORK

Layer Output shape

Input 512× 7× 7
ResBlockA 256× 14× 14
ResBlockA 128× 28× 28
ResBlockA 64× 56× 56
TranspConv3x3, stride=2 64× 113× 113
ResBlockB 3× 226× 224
Bilinear interpolation 3× 224× 224

Table 7. Image reconstructor architecture. ResBlockA is exactly
the same as ResBlockB except that it uses ReLU activation func-
tion, while ResBlockB uses sigmoid.

B. Image reconstructors
We carried out an experiment to investigate whether

the output tensor features without global average pooling

(GAP) can provide more spatial information to aid the re-
construction of the original image, when compared to vector
features obtained by GAP. A similar experiment has been
carried out by [66] to visualize the tensor feature maps. We
train two image reconstructors using a variant of an inverted
ResNet-18 architecture with an additional transposed con-
volution layer, as shown in Table 7. The first is a tensor
reconstructor, exactly as in Table 7. The second is a vec-
tor reconstructor taking a 512× 1× 1 input. It is identical,
except that it begins with an additional upsampling layer to
adapt spatial resolution to 7× 7.

We train each image reconstructor separately, taking as
input the features as provided from the pre-trained ResNet-
18 backbone, with and without GAP. For fair comparison,
both reconstructors use exactly the same training settings,
with ℓ1 reconstruction loss as the loss function, batch size
128, Adam optimizer with an initial learning rate of 0.01
and 500 epochs with learning rate decreasing by a factor of
4 every 100 epochs. Similarly to Figure 1, is evident from
Figure 5 that images reconstructed from tensor features are
perceptually more similar to the original. The same holds
for generated tensor and vector features, as shown in Fig-
ure 6. This experiment is for visualization purposes only;
these images are not used in any way by our method.



Figure 5. CUB images reconstructed from tensor/vector features of original images. Each set of 3 rows depicts the original images (row
1), followed by the images reconstructed by the tensor (row 2) and the vector (row 3) reconstructor. Meant for visualization only.



Figure 6. CUB images reconstructed from our generated tensor/vector features. Each set of 3 rows depicts the original images (row 1),
followed by the images reconstructed by the tensor (row 2) and the vector (row 3) reconstructor. Meant for visualization only.


